

Communication Algorithm-Architecture Co-Design for Distributed Deep Learning

Jiayi Huang Pritam Majumder Sungkeun Kim Abdullah Muzahid Ki Hwan Yum EJ Kim

UC Santa Barbara (work done at TAMU) Texas A&M University

UC SANTA BARBARA

□ Dataset and model complexity is exploding

Dataset and model complexity is exploding

Source: Dally, Logarithmic Numbers and Asynchronous Accumulators, The Future of DL Chips
Chips & Compiler Symposium at MLSys'21

Dataset and model complexity is exploding

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Source: Dally, Logarithmic Numbers and Asynchronous Accumulators, The Future of DL Chips
Chips & Compiler Symposium at MLSys'21

Dataset and model complexity is exploding

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018

Source: Dally, Logarithmic Numbers and Asynchronous Accumulators, The Future of DL Chips
Chips & Compiler Symposium at MLSys'21

□ GPT-3 – trained on part of an 10,000-GPU cluster* [Brown+ 2020]

^{*}Source: https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/

Input Dataset

xPU

xPU

xPU

xPU

xPU

All-Reduce

(reduce-scatter and all-gather)

Algorithms	(Small data)	Large data		Applied Well on
Algorimms	Latency	Bandwidth	Contention	Various Topologies
Ring [Patarasuk+Yuan JPDC'09]	high	optimal	none	✓

Algorithms	(Small data)	Large data		Applied Well on
Aigoninms	Latency	Bandwidth	Contention	Various Topologies
Ring [Patarasuk+Yuan JPDC'09]	high	optimal	none	✓

Algorithms	(Small data)	Large data		Applied Well on
	Latency	Bandwidth	Contention	Various Topologies
Ring [Patarasuk+Yuan JPDC'09]	high	optimal	none	√
Double binary tree [Sanders+ JPC'09]	low	optimal	high	imes (Topology-oblivious)

Long latency for small data

Topology-oblivious: node 1 to 2 crosses node 3 with 2 hops

Network contention for large data

Algorithms	(Small data)	Large data		Applied Well on
	Latency	Bandwidth	Contention	Various Topologies
Ring [Patarasuk+Yuan JPDC'09]	high	optimal	none	✓
Double binary tree [Sanders+ JPC'09]	low	optimal	high	imes (Topology-oblivious)

Long latency for small data

Topology-oblivious: node 1 to 2 crosses node 3 with 2 hops

Network contention for large data

Algorithms	(Small data)	Large data		Applied Well on
	Latency	Bandwidth	Contention	Various Topologies
Ring [Patarasuk+Yuan JPDC'09]	high	optimal	none	✓
Double binary tree [Sanders+ JPC'09]	low	optimal	high	imes (Topology-oblivious)
2D-Ring [Ying+ NeurlPsW'18]	low	sub-optimal	none	× (2D Torus/Mesh)

Long latency for small data

Network contention for large data

Algorithms	(Small data)	Large data		Applied Well on
	Latency	Bandwidth	Contention	Various Topologies
Ring [Patarasuk+Yuan JPDC'09]	high	optimal	none	✓
Double binary tree [Sanders+ JPC'09]	low	optimal	high	imes (Topology-oblivious)
2D-Ring [Ying+ NeurlPsW'18]	low	sub-optimal	none	imes (2D Torus/Mesh)
HDRM [Dong+ HPCA'20]	low	optimal	none	imes (EFLOPS's BiGraph)

MultiTree: Algorithm-Architecture Co-Design

- Topology-aware All-Reduce Algorithm
 Low latency and high bandwidth, applicable to different topologies
- Hardware-based All-Reduce Scheduling
 Contention-free communication
- Message-based Flow Control
 Exploit bulk transfer of large gradients for near perfect link bandwidth

MultiTree: Algorithm-Architecture Co-Design

- Topology-aware All-Reduce Algorithm
 Low latency and high bandwidth, applicable to different topologies
- Hardware-based All-Reduce Scheduling
 Contention-free communication
- ☐ Message-based Flow Control

Exploit bulk transfer of large gradients for near perfect link bandwidth

- □ Insight
 - Tree levels closer to leaves are denser than tree levels closer to roots
 - □ Top-down for tree construction: move more communications to roots

MultiTree: Algorithm-Architecture Co-Design

- Topology-aware All-Reduce Algorithm
 Low latency and high bandwidth, applicable to different topologies
- Hardware-based All-Reduce Scheduling
 Contention-free communication
- Message-based Flow Control

Exploit bulk transfer of large gradients for near perfect link bandwidth

- □ Insight
 - Tree levels closer to leaves are denser than tree levels closer to roots
 - □ Top-down for tree construction: move more communications to roots
- □ Approach: tree constructions as a link allocation problem
 - Allocate link for each time step (level) to build the trees progressively

Construct 4 spanning trees for a 4-node system

Link allocation for time step 1 (tree level 1)

0

2)

3

Construct 4 spanning trees for a 4-node system

Construct 4 spanning trees for a 4-node system

Construct 4 spanning trees for a 4-node system

Construct 4 spanning trees for a 4-node system

Construct 4 spanning trees for a 4-node system

Construct 4 spanning trees for a 4-node system

Run out of links for time step 1

2

Construct 4 spanning trees for a 4-node system

Run out of links for time step 1

2

Construct 4 spanning trees for a 4-node system

Run out of links for time step 1

2

MultiTree Construction Example (Time Step 2)

Construct 4 spanning trees for a 4-node system

Run out of links for time step 1

Link allocation for time step 2 (tree level 2)

Reduce-Scatter (reduction from leaf level to root)

All-Gather (broadcast from root to leaf level)

(1]

□ Message Command (Instruction): stored in an all-reduce schedule table entry

Op FlowID Parent Children Step Start Ac	lr Size
---	---------

□ Message Command (Instruction): stored in an all-reduce schedule table entry

Op FlowID Parent Children	Step Start Addr Size
---------------------------	----------------------

□ Op: Reduce, Gather, NOP

□ Message Command (Instruction): stored in an all-reduce schedule table entry

Op FlowID Parent Children Step Start Addr Siz

- □ Op: Reduce, Gather, NOP
- □ FlowID: the ID of the spanning tree root

Message Command (Instruction): stored in an all-reduce schedule table entry

Ор	FlowID	Parent	Children	Step	Start Addr	Size
----	--------	--------	----------	------	------------	------

- □ Op: Reduce, Gather, NOP
- □ FlowID: the ID of the spanning tree root
- Parent: for Reduce in tree reduction
- Children: for Gather in tree broadcast

Message Command (Instruction): stored in an all-reduce schedule table entry

Op FlowID Parent Children Step Start Addr Size

- □ Op: Reduce, Gather, NOP
- □ FlowID: the ID of the spanning tree root
- Parent: for Reduce in tree reduction
- □ Children: for Gather in tree broadcast

Reduce-Scatter (Reduction)

All-Gather (Broadcast)

Message Command (Instruction): stored in an all-reduce schedule table entry

Ор	FlowID	Parent	Children	Step	Start Addr	Size
						1

- □ Op: Reduce, Gather, NOP
- □ FlowID: the ID of the spanning tree root
- Parent: for Reduce in tree reduction
- □ Children: for Gather in tree broadcast

Accelerator 0

Ор	FlowID	Parent	Children				Step
Reduce	3	1	nil	nil	nil	nil	1
Reduce	1	1	nil	nil	nil	nil	2
Reduce	2	2	1	nil	nil	nil	2
Gather	0	nil	1	2	nil	nil	3
Gather	2	2	1	nil	nil	nil	4

Reduce-Scatter (Reduction)

All-Gather (Broadcast)

Message Command (Instruction): stored in an all-reduce schedule table entry

Op FlowID Parent Children Step Start Addr	Size
---	------

- □ Op: Reduce, Gather, NOP
- FlowID: the ID of the spanning tree root
- Parent: for Reduce in tree reduction
- □ Children: for Gather in tree broadcast

Accelerator 0

Ор	FlowID	Parent	Children				Step
Reduce	3	1	nil	nil	nil	nil	1
Reduce	1	1	nil	nil	nil	nil	2
Reduce	2	2	1	nil	nil	nil	2
Gather	0	nil	1	2	nil	nil	3
Gather	2	2	1	nil	nil	nil	4

All-Gather (Broadcast)

- □ BW in Torus and BiGraph
 - MultiTree achieves low latency and high BW

- □ BW in Torus and BiGraph
 - MultiTree achieves low latency and high BW
 - In Torus, 2D-Ring > Ring > DBTree

- □ BW in Torus and BiGraph
 - MultiTree achieves low latency and high BW
 - In Torus, 2D-Ring > Ring > DBTree
 - In Bigraph, HDRM good at latency and BW, but worse than MultiTree

- □ BW in Torus and BiGraph
 - MultiTree achieves low latency and high BW
 - In Torus, 2D-Ring > Ring > DBTree
 - In Bigraph, HDRM good at latency and BW, but worse than MultiTree
 - Ring has good BW while DBTree has good latency in BiGraph

- □ BW in Torus and BiGraph
 - MultiTree achieves low latency and high BW
 - In Torus, 2D-Ring > Ring > DBTree
 - In Bigraph, HDRM good at latency and BW, but worse than MultiTree
 - Ring has good BW while DBTree has good latency in BiGraph
- □ DNN Training Time in 8x8 Torus

- □ BW in Torus and BiGraph
 - MultiTree achieves low latency and high BW
 - In Torus, 2D-Ring > Ring > DBTree
 - In Bigraph, HDRM good at latency and BW, but worse than MultiTree
 - Ring has good BW while DBTree has good latency in BiGraph
- □ DNN Training Time in 8x8 Torus
 - 2.3x and 1.56x communication speedup over Ring and 2D-Ring
 - Up to 81% and 31% training time reduction compared to Ring and 2D-Ring

FasterRCNN GoogLeNet ResNet50 AlphaGoZero

Communication Algorithm-Architecture Co-Design for Distributed Deep Learning

Jiayi Huang Pritam Majumder Sungkeun Kim Abdullah Muzahid Ki Hwan Yum EJ Kim

UC Santa Barbara (work done at TAMU) Texas A&M University

UC SANTA BARBARA