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0 GPT-3 — trained on part of an 10,000-GPU cluster* [Brown+ 2020l

*Source: https://developer.nvidia.com/blog /openai-presents-gpt-3-a-175-billion-parameters-language-model /
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O Tree levels closer to leaves are denser than tree levels closer to roots
o Top-down for tree construction: move more communications to roots

0 Approach: tree constructions as a link allocation problem
o Allocate link for each time step (level) to build the trees progressively
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0 Message Command (Instruction): stored in an all-reduce schedule table entry
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0 Message Command (Instruction): stored in an all-reduce schedule table entry
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