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Increasing Demand for Distributed Training

¨ Dataset and model complexity is exploding

¨ GPT-3 – trained on part of an 10,000-GPU cluster* [Brown+ 2020]

Source: Dally, Logarithmic Numbers and Asynchronous Accumulators, The Future of DL Chips
Chips & Compiler Symposium at MLSys’21

*Source: https://developer.nvidia.com/blog/openai-presents-gpt-3-a-175-billion-parameters-language-model/
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Data-Parallel Training

Back-Propagation

DNN model redrawn from Ben-Nun+ ACM Computing Surveys, vol. 52, no. 4, August 2019
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All-Reduce
(reduce-scatter and all-gather)

Data-Parallel Training
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Input Dataset

xPUxPUxPU xPU

DNN Model

3



Data-Parallel Training

DNN model redrawn from Ben-Nun+ ACM Computing Surveys, vol. 52, no. 4, August 2019
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Double binary tree [Sanders+ JPC’09] low optimal high ✕ (Topology-oblivious)
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¨ Topology-aware All-Reduce Algorithm
Low latency and high bandwidth, applicable to different topologies

¨ Hardware-based All-Reduce Scheduling
Contention-free communication

¨ Message-based Flow Control
Exploit bulk transfer of large gradients for near perfect link bandwidth

Insight
Tree levels closer to leaves are denser than tree levels closer to roots
Top-down for tree construction: move more communications to roots

Approach: tree constructions as a link allocation problem
Allocate link for each time step (level) to build the trees progressively

MultiTree: Algorithm-Architecture Co-Design
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¨ Message-based Flow Control
Exploit bulk transfer of large gradients for near perfect link bandwidth

¨ Insight
¤ Tree levels closer to leaves are denser than tree levels closer to roots
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MultiTree Construction Example (Time Step 2)
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MultiTree Construction Example (Time Step 2)
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MultiTree All-Reduce: Reduce-Scatter

0 1

2 3

0

2 1

3

1

3 0

2

2

0 3

1

3

1 2

0

0

2 1

3

1

3 0

2

2

0 3

1

3

1 2

0

Reduce-Scatter (reduction from leaf level to root)

All-Gather (broadcast from root to leaf level )

8



MultiTree All-Reduce: Reduce-Scatter

0 1

2 3

0

2 1

3

1

3 0

2

2

0 3

1

3

1 2

0

0

2 1

3

1

3 0

2

2

0 3

1

3

1 2

0

Reduce-Scatter (reduction from leaf level to root)

All-Gather (broadcast from root to leaf level )

8



0 1

2 3

MultiTree All-Reduce: Reduce-Scatter

0

2 1

3

1

3 0

2

2

0 3

1

3

1 2

0

0

2 1

1

3 0

2

0 3

3

1 2

Reduce-Scatter (reduction from leaf level to root)

All-Gather (broadcast from root to leaf level )

8



0 1

2 3

MultiTree All-Reduce: Reduce-Scatter

0

2 1

3

1

3 0

2

2

0 3

1

3

1 2

0

0 1 2 3

Reduce-Scatter (reduction from leaf level to root)

All-Gather (broadcast from root to leaf level )

8



MultiTree All-Reduce: All-Gather
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Hardware-based All-Reduce Scheduling and Example

¨ Message Command (Instruction): stored in an all-reduce schedule table entry
Op FlowID Parent Children Step Start Addr Size
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Evaluation – Bandwidth (top) and DNN Training Time (bottom)

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

DBTree

Ring
2D-Ring

MultiTree

MultiTreeMsg

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 32-nRGe 4× 8 BiGrDSK

0

2

4

6

8

10

BD
nG

w
iG

tK
 (G

B/
s)

64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

DBTree

Ring
2D-Ring

MultiTree

MultiTreeMsg

HDRM

Latency
sensitive

Bandwidth
sensitive

DBTree
Ring

MultiTreeMsg

MultiTree

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 32-nRGe 4× 8 BiGrDSK

0

2

4

6

8

10

BD
nG

w
iG

tK
 (G

B/
s)

64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

¨ BW in Torus and BiGraph
¤ MultiTree achieves low latency and 

high BW
In Torus, 2D-Ring > Ring > DBTree
In Bigraph, HDRM good at latency and 
BW, but worse than MultiTree
Ring has good BW while DBTree has 
good latency in BiGraph

DNN Training Time in 8x8 Torus
2.3x and 1.56x communication
speedup over Ring and 2D-Ring
Up to 81% and 31% training time 
reduction compared to Ring and 2D-
Ring

DBTree

Ring
2D-Ring

MultiTree

MultiTreeMsg

HDRM

Latency
sensitive

Bandwidth
sensitive

DBTree
Ring

MultiTreeMsg

MultiTree

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 32-nRGe 4× 8 BiGrDSK

0

2

4

6

8

10

BD
nG

w
iG

tK
 (G

B/
s)

64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

¨ BW in Torus and BiGraph
¤ MultiTree achieves low latency and 

high BW
¤ In Torus, 2D-Ring > Ring > DBTree
In Bigraph, HDRM good at latency and 
BW, but worse than MultiTree
Ring has good BW while DBTree has 
good latency in BiGraph

DNN Training Time in 8x8 Torus
2.3x and 1.56x communication
speedup over Ring and 2D-Ring
Up to 81% and 31% training time 
reduction compared to Ring and 2D-
Ring

DBTree

Ring
2D-Ring

MultiTree

MultiTreeMsg

HDRM

Latency
sensitive

Bandwidth
sensitive

DBTree
Ring

MultiTreeMsg

MultiTree

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 32-nRGe 4× 8 BiGrDSK

0

2

4

6

8

10

BD
nG

w
iG

tK
 (G

B/
s)

64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

¨ BW in Torus and BiGraph
¤ MultiTree achieves low latency and 

high BW
¤ In Torus, 2D-Ring > Ring > DBTree
¤ In Bigraph, HDRM good at latency 

and BW, but worse than MultiTree
Ring has good BW while DBTree has 
good latency in BiGraph

DNN Training Time in 8x8 Torus
2.3x and 1.56x communication
speedup over Ring and 2D-Ring
Up to 81% and 31% training time 
reduction compared to Ring and 2D-
Ring

DBTree

Ring
2D-Ring

MultiTree

MultiTreeMsg

HDRM

Latency
sensitive

Bandwidth
sensitive

DBTree
Ring

MultiTreeMsg

MultiTree

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 32-nRGe 4× 8 BiGrDSK

0

2

4

6

8

10

BD
nG

w
iG

tK
 (G

B/
s)

64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

¨ BW in Torus and BiGraph
¤ MultiTree achieves low latency and 

high BW
¤ In Torus, 2D-Ring > Ring > DBTree
¤ In Bigraph, HDRM good at latency 

and BW, but worse than MultiTree
¤ Ring has good BW while DBTree has 

good latency in BiGraph

DNN Training Time in 8x8 Torus
2.3x and 1.56x communication
speedup over Ring and 2D-Ring
Up to 81% and 31% training time 
reduction compared to Ring and 2D-
Ring

DBTree

Ring
2D-Ring

MultiTree

MultiTreeMsg

HDRM

Latency
sensitive

Bandwidth
sensitive

DBTree
Ring

MultiTreeMsg

MultiTree

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 32-nRGe 4× 8 BiGrDSK

0

2

4

6

8

10

BD
nG

w
iG

tK
 (G

B/
s)

64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

¨ BW in Torus and BiGraph
¤ MultiTree achieves low latency and 

high BW
¤ In Torus, 2D-Ring > Ring > DBTree
¤ In Bigraph, HDRM good at latency 

and BW, but worse than MultiTree
¤ Ring has good BW while DBTree has 

good latency in BiGraph

¨ DNN Training Time in 8x8 Torus
2.3x and 1.56x communication
speedup over Ring and 2D-Ring
Up to 81% and 31% training time 
reduction compared to Ring and 2D-
Ring

DBTree

Ring
2D-Ring

MultiTree

MultiTreeMsg

5L
ng

D
BT

re
e

2D
-5

Ln
g

0
ul

tLT
re

e
0

ul
tLT

re
e0

sg

5L
ng

D
BT

re
e

2D
-5

Ln
g

0
ul

tLT
re

e
0

ul
tLT

re
e0

sg

5L
ng

D
BT

re
e

2D
-5

Ln
g

0
ul

tLT
re

e
0

ul
tLT

re
e0

sg

5L
ng

D
BT

re
e

2D
-5

Ln
g

0
ul

tLT
re

e
0

ul
tLT

re
e0

sg

5L
ng

D
BT

re
e

2D
-5

Ln
g

0
ul

tLT
re

e
0

ul
tLT

re
e0

sg

5L
ng

D
BT

re
e

2D
-5

Ln
g

0
ul

tLT
re

e
0

ul
tLT

re
e0

sg

5L
ng

D
BT

re
e

2D
-5

Ln
g

0
ul

tLT
re

e
0

ul
tLT

re
e0

sg
0.0

0.5

1.0

1.5

2.0

2.5

1
Rr

P
Dl

Lz
eG

 5
un

tLP
e 

Br
eD

NG
RZ

n

Alex1et FDster5C11 GRRgLe1et 5es1et50 AlShDGRZerR 1CF TrDnsfRrPer

All-5eGuFe FRrZDrG+BDFN-PrRSDgDtLRn All-5eGuFe SSeeGuS

0.0

0.5

1.0

1.5

2.0

2.5

A
ll-

5e
Gu

Fe
 S

Se
eG

uS

HDRM

Latency
sensitive

Bandwidth
sensitive

DBTree
Ring

MultiTreeMsg

MultiTree

11



64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 32-nRGe 4× 8 BiGrDSK

0

2

4

6

8

10

BD
nG

w
iG

tK
 (G

B/
s)

64KB 512KB 40B 320B
All-5eGuce DDtD 6ize -- 16-nRGe 4× 4 TRrus

0

5

10

15

20

25

30

BD
nG

w
iG

tK
 (G

B/
s)

Evaluation – Bandwidth (top) and DNN Training Time (bottom)

¨ BW in Torus and BiGraph
¤ MultiTree achieves low latency and 

high BW
¤ In Torus, 2D-Ring > Ring > DBTree
¤ In Bigraph, HDRM good at latency 

and BW, but worse than MultiTree
¤ Ring has good BW while DBTree has 

good latency in BiGraph

¨ DNN Training Time in 8x8 Torus
¤ 2.3x and 1.56x communication

speedup over Ring and 2D-Ring
¤ Up to 81% and 31% training time 

reduction compared to Ring and 2D-
Ring
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More in the paper
¨ Hardware-based scheduling control and datapath design
¨ Message-based flow control
¨ More evaluation settings and results

¤ Mesh and Fat-Tree network topologies with different scales
¤ Scalability study
¤ Communication and computation overlap for DNN Training
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