
Introduction

Fully Sharded Checkpointing

Two-Level Checkpointing Management

❖ Background: As large language models continue 

to scale up, distributed training systems have 

expanded beyond 10k nodes, intensifying the 

importance of fault tolerance [1]. Although 

numerous studies have effectively addressed fault 

tolerance for dense (non-MoE) models through 

periodical checkpoints, the distinctive 

characteristics of MoE models necessitate 

specialized strategies to assure their reliable and 

efficient fault-tolerant training [2]. 

◼ Unprecedented Model Size: It results in the 

substantial increase in checkpoint size, which poses 

a storage burden that distributed filesystems 

struggle to handle efficiently. 

◼ Sparsely-Activated Expert Computation: The 

enlarged checkpointing duration cannot be fully 

overlapped with the training process, as the 

computational workload does not scale 

proportionally with the enlarged model size. 

• Checkpoint in LLMs:

• Model States Distributed with ZeRO-2 DP + EP:

• Checkpointing Workflow:

❖ Inspiration: Expert parameters are less sensitive 

to a limited number of training updates compared 

to non-expert parameters [3].

❖Our Contributions: We propose the Mixture-of-

Checkpoint System (MoC-System) to orchestrate 

the vast array of checkpoint shards produced in 

distributed training systems. 

◼ Partial Experts Checkpointing: MoC-System 

features a novel Partial Experts Checkpointing 

(PEC) mechanism, an algorithm-system co-design 

that strategically saves a selected subset of 

experts, effectively reducing the MoE checkpoint 

size to levels comparable with dense models. 

◼ Fully Sharded Checkpointing: Incorporating 

hybrid parallel strategies, MoC-System involves 

fully sharded checkpointing strategies to evenly 

distribute the workload across distributed ranks. 

◼ Two-Level Checkpointing Management: 

Furthermore, MoC-System introduces a two-level 

checkpointing management method that 

asynchronously handles in-memory snapshots and 

persistence processes.

 [1] Jiang, Ziheng, et al. "MegaScale: Scaling large language model training to more 
than 10,000 GPUs." 21st USENIX Symposium on Networked Systems Design and 
Implementation (NSDI 24). 2024.

 [2] Mohan, Jayashree, Amar Phanishayee, and Vijay Chidambaram. "CheckFreq: 
Frequent,Fine-Grained DNN Checkpointing." 19th USENIX Conference on File and 
Storage Technologies (FAST 21). 2021.

 [3] Zoph, Barret, et al. "St-moe: Designing stable and transferable sparse expert 
models." arXiv preprint arXiv:2202.08906 (2022).

 [4] Microsoft. 2022. Megatron-DeepSpeed. https://github.com/microsoft/Megatron-
DeepSpeed

References

MoC-System: Efficient Fault Tolerance 
for Sparse Mixture-of-Experts Model Training

Weilin Cai, Le Qin, Jiayi Huang

{wcai738, lqin674}@connect.hkust-gz.edu.cn, hjy@hkust-gz.edu.cn

The Hong Kong University of Science and Technology (Guangzhou)
Wed. April 2

17:30-17:50 (6-C)

Rank

3
Expert1Non-Expert

Rank

2
Expert0Non-Expert

Rank

1
Expert1Non-Expert

Rank

0
Expert0Non-Expert

Baseline

EP-Group-0 

EP-Group-1 

Rank

1
Expert1

Rank

0
Expert0Non-Expert

Rank

3
Expert1Non-Expert

Rank

2
Expert0Non-Expert

Equal Sharding for Non-Expert Part

EP-Group-0 

EP-Group-1 

Non-Expert

Non-Expert

Non-Expert

Non-Expert Expert0

Expert0

Expert1

Expert1

Rank

1
Expert1

Rank

0
Expert0Non-Expert

Rank

3
Expert1Non-Expert

Rank

2
Expert0Non-Expert

Adaptive Sharding for Non-Expert Part

EP-Group-0 

EP-Group-1 

Non-Expert

Non-Expert

Non-Expert

Non-Expert Expert0

Expert0

Expert1

Expert1

Partial Experts Checkpointing

In light of the substantial increase in checkpoint size 

predominantly attributed to the multiplicity of FFN 

experts within the MoE model, we introduce the 

concept of Partial Experts Checkpointing (PEC) to 

significantly downsize the checkpoint. PEC selectively 

saves 𝐾𝑝𝑒𝑐 experts per MoE layer during each 

checkpointing, while fully saving the non-expert 

parameters of the model.

◼ Impact on Model Accuracy: To quantitatively 

assess the potential impact on accuracy 

attributed to PEC, we introduce a novel metric, 

the Proportion of Lost Tokens (PLT). The PLT metric 

is designed to quantify the average proportion 

of tokens lost across all the MoE layers throughout 

the training. The following figures show that PEC 

can minimize checkpoint size without harming 

model accuracy in the case of limited PLT.

Existing distributed training frameworks lack an 

efficient data-parallel sharding strategy for MoE

model training. In contrast, we implement fully 

sharded checkpointing for MoE model training and 

further introduce an adaptive sharding strategy with 

our PEC mechanism, outperforming the commonly 

used equal sharding strategy.

◼ Replicated Model Parameters across Ranks:

 Equal Sharding for Expert Part: Employs each 

expert as the smallest unit for distribution across 

various EP groups.

 Equal Sharding for Non-Expert Part: Evenly 

distribute the workload of checkpointing non-

expert layers across all DP ranks.

Adaptive Sharding for Non-Expert Part: PEC 

may lead to an imbalanced checkpointing 

workload for the expert part. To leverage the 

spare capacity across ranks, we introduce the 

adaptive sharding to allocates non-expert parts 

based on the selection pattern of PEC.

PLT (%) Validation Loss

To maximize the benefits of hierarchical storage, we 

propose a two-level checkpointing management into 

our MoC system, comprising (1) in-memory snapshot 

and (2) persist, coupled with a suite of optimization 

techniques.

 Two-level PEC Saving (Normal Training):

 Two-level PEC Recovery (Node-0 Fault):

Asynchronous Checkpointing & Triple Buffer:

We implement our proposed MoC-System and 

conduct experiments upon the Megatron-

DeepSpeed [4]. Our experiments include both 

language (GPT-MoE) and vision (Swin-MoE) models, 

utilizing three distributed training configurations of 

ZeRO-2 Data Parallelism and Expert Parallelism.

◼ Checkpoint Size:

◼ Checkpointing Time:

◼ Training Acceleration:

Evaluation

◼ Scaling Simulation:

◼ Accuracy Impact on Downstream Tasks:

◼ Training Accuracy:


