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Introduction Partial Experts Checkpointing Two-Level Checkpointing Management

*** Background: As large language models continue In light of the substantial increase in checkpoint size To maximize the benefits of hierarchical storage, we
to scale up, distributed training systems have predominantly attributed to the multiplicity of FFN propose a two-level checkpointing management into
expanded beyond 10k nodes, intensifying the experts within the MoE model, we introduce the our MoC system, comprising (1) in-memory snapshot
importance of fault tolerance [1]. Although concept of Partial Experts Checkpointing (PEC) to and (2) persist, coupled with a suite of optimization
numerous studies have effectively addressed fault significantly downsize the checkpoint. PEC selectively techniques.
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fully sharded checkpointing strategies to evenly based on the selection pattern of PEC.
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