
25

Toward Taming the Overhead Monster for

Data-flow Integrity

LANG FENG, Nanjing University, China and Texas A&M University, USA

JIAYI HUANG, University of California, Santa Barbara, USA

JEFF HUANG and JIANG HU, Texas A&M University, USA

Data-Flow Integrity (DFI) is a well-known approach to effectively detecting a wide range of software attacks.
However, its real-world application has been quite limited so far because of the prohibitive performance
overhead it incurs. Moreover, the overhead is enormously difficult to overcome without substantially lowering
the DFI criterion. In this work, an analysis is performed to understand the main factors contributing to the
overhead. Accordingly, a hardware-assisted parallel approach is proposed to tackle the overhead challenge.
Simulations on SPEC CPU 2006 benchmark show that the proposed approach can completely enforce the DFI
defined in the original seminal work while reducing performance overhead by 4×, on average.

CCS Concepts: • Computer systems organization→Architectures; • Security and privacy→ Systems

security;

Additional Key Words and Phrases: Data-flow integrity, processing in memory

ACM Reference format:

Lang Feng, Jiayi Huang, Jeff Huang, and Jiang Hu. 2021. Toward Taming the Overhead Monster for Data-flow
Integrity. ACM Trans. Des. Autom. Electron. Syst. 27, 3, Article 25 (November 2021), 24 pages.
https://doi.org/10.1145/3490176

1 INTRODUCTION

Data-Flow Integrity (DFI) is a regulation to ensure that data to be accessed are written by legiti-
mate instructions [7]. As such, DFI enforcement can identify unwanted data modifications that are
not consistent with the programmer’s intention. It can detect a wide variety of security attacks,
including control data attacks such as Jump-Oriented Programming (JOP) [6] and Return-

Oriented Programming (ROP) [27], and non-control data attacks such as Heartbleed [34]
and the heap overflow attack to Nullhttpd [23]. As a large number of software attacks rely on
data modifications, DFI is a single principle that is effective for many different attack scenarios,
including future potential ones. In fact, its defense scope is a much bigger superset of Control-

Flow Integrity (CFI) [1], which is another well-known software security approach.

This work is partially supported by NSF (CNS-1618824) and NSF (CCF-1815583).
Authors’ addresses: L. Feng, Nanjing University, 163 Xianlin Road, Qixia District, Nanjing, China, 210023, Texas A&M
University, 400 Bizzell Street, College Station, TX, 77840; email: flang@nju.edu.cn; J. Huang, University of California, Santa
Barbara, CA, 93106; email: jyhuang@ucsb.edu; J. Huang and J. Hu, Texas A&M University, 400 Bizzell Street, College Station,
TX, 77840; emails: {jeffhuang, jianghu}@tamu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1084-4309/2021/11-ART25 $15.00
https://doi.org/10.1145/3490176

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

https://doi.org/10.1145/3490176
mailto:permissions@acm.org
https://doi.org/10.1145/3490176

25:2 L. Feng et al.

The concept of DFI was introduced in 2006 by the seminal work cited in Reference [7] and has
received a great amount of attention thereafter due to its potential of being a powerful security
measure. To differentiate from the approaches in terms of granularity, the DFI enforcement in
Reference [7] is named complete DFI in this article. However, a complete DFI enforcement as
in Reference [7] incurs more than 100% performance overhead even though several optimization
techniques have been applied. Indeed, the huge overhead seems inevitable, as every data access
needs to be examined. Due to this intrinsic difficulty, there have been few follow-up works on DFI
despite its widely recognized importance. This is in sharp contrast to CFI [1], which has much
more published studies [10–13, 19, 21, 39].

The few later works on DFI [2, 20, 29, 30] reduce the overhead by exploiting partial DFI, whose
criteria are substantially lower than the original DFI definition [7]. The Hardware-assisted Data-

Flow Isolation (HDFI) [30] is one example. It partitions data into two regions and only requires
that data to be read and written must be consistent in the same region. In other words, it reports
a violation only when data intends to be in one region but is actually written by an instruction for
another region. Although its overhead is very small, the enforcement granularity is very coarse
and may miss attacks that mingle different data within the same region, By contrast, a complete
DFI [7] can isolate data among dozens of thousands of regions, i.e., a resolution >30,000× higher
than HDFI. Therefore, the security price that HDFI paid for its overhead reduction can be very high.

Enforcing the complete DFI [7] with practically acceptable overhead is a huge challenge. Differ-
ent from most of existing overhead reduction techniques [2, 20, 29, 30], which rely on lowering
the DFI criterion, we pursue a new approach that exploits additional hardware while the original
DFI [7] can still be completely enforced. As hardware cost becomes increasingly affordable along
with the progress of semiconductor technology, reducing performance overhead at the expense of
extra hardware is a promising direction.

We first conduct an extensive performance analysis of DFI. Surprisingly, the frequent DFI data
access does not lead to frequent memory access and thus, memory access is not a bottleneck,
but the other computations involved in DFI enforcement contribute the most to the overhead. We
propose a parallel and asynchronous approach, where most of the DFI computations are performed
in another processor core. However, a straightforward software-based parallel computing still
experiences huge overhead resulted from runtime information collection and communications
with the other processor core. Therefore, we develop a new hardware technique to further trim
down the overhead. This hardware-assisted parallel approach also includes new software instru-
mentation techniques, lossless data compression, and runtime optimization techniques. For the
ease of deployment, we intend to minimize the dependence on computing infrastructure changes.
Except the necessary circuits and software instrumentation, our approach does not rely on using
new instructions or OS modifications.

Overall, the proposed approach reduces performance overhead from 161% of Reference [7] to
an average of 36% on the same SPEC CPU 2006 benchmarks. As it is a complete DFI enforcement,
it can detect a wide range of security attacks and cover cases that cannot be handled by the
previous low-overhead methods [2, 20, 29, 30]. Our approach provides a solution with a security-
overhead tradeoff in complement to existing methods [2, 20, 29, 30]. A brief comparison with
existing methods is summarized in Table 1. The contributions of this work are as follows:

• An overhead breakdown analysis is performed to understand the main performance bottlenecks
in software DFI.
• This is the first hardware approach for complete DFI enforcement, to the best of our knowledge.
• Two variants of the proposed approach are investigated, one for Processing-In-Memory (PIM)

and the other for Chip Multiprocessor (CMP).

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:3

Table 1. Comparison between Our Work and Others

Method1 Performance

Overhead

DFI

Enforcement
Completeness

Approach
New

Instruc-
tion

OS

Change

SW DFI [7] 161% Complete SW × ×
KENALI [29] 7%–15% Partial SW ×

√

WIT [2] 7% Partial SW × ×
CHERI [36] 5%–20% Partial HW

√ √

TMDFI [20] 39% Partial HW
√

×
HDFI [30] <2% Partial HW

√ √

Our work 36% Complete HW × ×

• The tradeoff between DFI violation detection latency and performance overhead is studied.
• Our approach achieves about 4× overhead reduction, which is a major progress for complete

DFI since 2006.

The rest of this article is organized as follows: Section 2 introduces the background. The threat
model and system assumptions are introduced in Section 3. The related work is briefly reviewed
in Section 4, and characterizations are performed in Section 5 to uncover the key factor for the
performance overhead. Section 6 provides an overview of our approach. Next, Sections 7, 8, and
9 describe the three critical parts of our design. The experiment results are shown in Section 10.
Section 11 discusses the tradeoff of our approach and broader applications. Finally, we conclude
in Section 12.

2 BACKGROUND ON DATA-FLOW INTEGRITY

Data-flow integrity requires that data to be loaded from memory can only be stored by legitimate
instructions that are consistent with the programmer’s original intention [7]. Every instruction in
a program is assigned a numerical identifier through automatic code instrumentation. If the data
loaded by instruction A was most recently stored by instruction B, then the reaching definition of
A is B and is represented by the identifier of B. Each instruction that can load data from memory has
its own Reaching Definition Set (RDS), which consists of all the allowed reaching definitions
of this instruction. A static software analysis can be performed for a program to obtain the RDSs
for all relevant instructions. In the example of Figure 1, “store x y” means storing variable x at
address y, “load x y” is to load the data at address y to variable x, “cmp x y” is to compare the
values of variable x and variable y, and “jne label” implies a conditional branch to the location
marked by label, if the values in the previous comparison are different. If the identifier of each
instruction is the same as its line number, then the RDS of instruction “load x3 addr1” (line
6) is {5}, and the RDS of instruction “load x4 addr1” (line 8) is {1, 5}. DFI requires that all the
instructions that can load data from memory are consistent with their RDSs, i.e., when executing
an instruction A that loads data from memory, the data should indeed be most recently stored by
one of the instructions in the RDS of A. Hence, the identifier of the latest instruction that stores
a data needs to be tracked for the data. Such identifiers for all data form a Reaching Definition

Table (RDT).
In summary, given a program, the information required for DFI enforcement and their locations

are as follows:

1All the listed works need code static analysis and instrumentation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:4 L. Feng et al.

Fig. 1. A code example for illustrating DFI, where the line numbers are used as identifiers (IDs) for the
corresponding instructions for simplicity.

(1) RDS (Reaching Definition Set) for all load instructions in the program. This information
never changes throughout the program execution, and it can be loaded into the memory once
in the beginning.

(2) RDT (Reaching Definition Table). This information changes dynamically during a program
execution. It is stored in the memory and maintained by the computing resource for DFI
enforcement.

(3) Target instruction information. A target instruction is an instruction in the program to be
enforced for DFI. Mainly two types of instructions are involved: load instructions for which
DFI enforcement is performed and store instructions that affect RDT. These two pieces of
information change at runtime and need to be obtained by the computing resource for DFI
enforcement. It consists of the following components:
• Instruction identifier.
• Instruction type: either load or store.
• Target address of load or store.

After all the three kinds of information are obtained, DFI enforcement can be performed.

3 THREAT MODEL AND SYSTEM ASSUMPTIONS

Following the typical threat model of most related work, it is assumed that the attackers are able
to leverage the possible software vulnerabilities to corrupt any locations in the memory. Once
the attack is successfully performed, the attackers can take any desired actions. The software
vulnerabilities may exist in any places of the user programs. Note that any attacks that leverage
hardware vulnerabilities are not considered in our threat model. For example, rowhammer [16]
and cache side-channel attacks [17] are out of the scope. Meanwhile, the attacks that maliciously
modify the instructions can be simply protected by Write XOR Execute (W⊕X) technique [38],
and they are not included in this work.

For our system, we assume that all the software can be static analyzed, and the static analysis
is assumed to be accurate. The static analysis tool can provide the software programs’ RDSs of all
the instructions that can load data. The DFI software toolchain and the hardware of our system
are assumed to be trusted and bug-free.

Under this threat model, DFI is a superset of Control-Flow Integrity (CFI) [1], which only
regulates instruction flow transitions toward target addresses conforming to the original design
intention. Attackers have to modify the control data, such as the target address for an indirect
branch, to change the control flow. By protecting all the data, DFI can also prevent control-flow
attacks. Additionally, DFI can protect non-control data that cannot be covered by CFI.

4 PREVIOUS WORK

The concept of DFI was proposed in Reference [7] in 2006. This work also provides a software
implementation technique and optimization techniques for overhead reduction. Although the DFI

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:5

enforcement procedure is simple, its performance overhead is intrinsically huge as the enforce-
ment needs to be conducted for tremendous data.

The few later previous works [2, 20, 29, 30, 36] achieved much lower overhead by focusing on
partial DFI. The work of Reference [29] is restricted to only certain selected data for kernel software.
One of its main contributions is the techniques on how to select data to be protected. Although
its performance overhead is only 7%–15%, its application is restrictive and misses many attacks at
user programs. For example, Nullhttpd [23], Heartbleed [34], and data-oriented programming [14]
are conducted at user level and thus not handled by this technique. By contrast, our approach
covers both kernel- and user-level programs.

While DFI involves both load and store instructions, the scope of Write Integrity Testing

(WIT) [2] is restricted to store. It requires that each store instruction can only write to certain
data objects, and each indirect call can only call certain functions. Although its overhead is
at most 25%, it does not cover load instructions. Thus, an unsafe load instruction may read
more bytes than the programmer’s intention, and consequently information leak may occur, e.g.,
Heartbleed [34] is an attack that WIT would fail to detect. Another related work, HardScope [24],
also restricts the memory access behaviors of each function with different memory access rules,
which only allow certain data to be accessed. Thus, it prevents the instructions in the unprivileged
functions from accessing the privileged data. While HardScope has low performance overhead, it
does not distinguish each store and load, thus, it is less fine-grained than complete DFI.

Data isolation is another approach to protecting data with relatively low overhead. A hardware
solution for data-flow isolation, called HDFI, is proposed in Reference [30]. It designates two data
regions, a sensitive one and a non-sensitive one. A 1-bit tag is employed to tell the region that a
data belongs to. Instruction set is modified such that the tags can be read and set. Moreover, the
processor hardware and the operating system also need changes. If data belongs to one region,
then it cannot be written by an instruction for the other region. Although the isolation helps
security, it cannot handle the case where load/store instructions for different data of the same
region are mingled. Consider the example in Figure 2, where input data are first written into u0
and u1 at lines 10 and 11. Later, the data are copied to buffers at lines 13–15. If there is buffer
overflow when executing line 10, i.e., the input data size exceeds 256, then offset u0->off is
modified unintentionally. Then, line 13 may copy user0’s data to other users’ buffers through the
modified u0->off. Meanwhile, user1 can write to user2’s buffer at line 14 in the same way. As
HDFI partitions data into only two regions, one of the user pairs—(user0, user1), (user0, user2),
or (user1, user2)—must share the same region. Consequently, the former user in a pair can attack
the latter in the pair without being detected by HDFI. By contrast, to a certain degree, the original
DFI [7] can be regarded as data isolation among individual instructions. If 16 bits are used for each
instruction identifier, then it is equivalent to isolation among up to 216 regions. Compared to the
only two regions of HDFI [30], the resolution of the original DFI is 215 = 32,768 times higher. Thus,
its low overhead of <2% comes with the price of very coarse-grained security resolution. Similar
to HDFI, TMDFI [20] also enforces DFI by a tag-based approach, and it results in 39% overhead.
However, TMDFI only uses 8 bits for the tag and can only isolate 28 = 256 regions, which are
much coarser grained than the resolution of our approach. For a typical program, such as each
benchmark in SPEC CPU 2006, it needs at least >1,000 and sometimes >10,000 identifiers, which
cannot be isolated by 256 regions, so TMDFI is not sufficient to support complete DFI for a typical
program, while our approach is.

There are also other tag-based isolation techniques. The work of Reference [8] uses 1-bit tag for
each word of data to indicate its integrity level in Biba’s low-water-mark integrity policy [5], which
requires that an instruction can only modify data with integrity level no higher than that of the
instruction. In Reference [8], processor hardware is modified to enforce this policy for control data

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:6 L. Feng et al.

Fig. 2. An example of vulnerability that HDFI cannot detect.

Fig. 3. Cache hit rates of user programs with and without software DFI. The high cache hit rates indicate
that memory access is probably not a bottleneck.

protection. In Reference [36], a 256-bit tag is employed to specify if each data can be referred by
certain instructions. However, the 256-bit in Reference [36] has a different meaning from the 16-bit
identifier in our approach. For security, the approach in Reference [36] only handles the permission
of pointers. In contrast, our approach handles the permission of every store/load instruction.
Overall, the tag-based techniques cited in References [8, 20, 30, 36] provide only coarse-grained
isolation as different data/instructions with the same tag cannot be isolated from each other.

5 PERFORMANCE OVERHEAD ANALYSIS

We analyze the source of performance overhead of software DFI [7]. The experiment setup of the
analysis is the same as that in Section 10.1. We call the program to be checked by DFI enforcement
the user program. For a user program, when each store or load is executed, RDT needs to be
accessed and consequently data transfer with memory may be greatly increased. A memory access
typically takes hundreds of clock cycles and can cause huge overhead. Thus, we first tested the
cache hit rate to understand the DFI’s impact on memory accesses.

When testing with SPEC CPU 2006 benchmark [31], the cache hit rates of user programs without
DFI enforcement and with software DFI are shown in Figure 3. One can see that the cache hit rates
are usually greater than 95% regardless of applying DFI enforcement or not. This indicates that
memory access is probably not a bottleneck.

We further investigated the overhead breakdown of software DFI, of which the results are shown
in Figure 4, where “RDT Search” represents the execution of the instrumented instructions for
finding the RDT entry of the corresponding user load or store. “Bounds Check” means the check
for preventing RDT from illegal modification. “Library Loop” represents the execution of the loop-
related instructions (such as comparison and branch instructions) in the instrumentation for each

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:7

Fig. 4. Overhead breakdown of software DFI. The results indicate that the bottleneck is not memory access
but “DFI check” instructions.

library function. “DFI Check” indicates the comparisons checking if the identifier found in RDT
Search is in the RDS of the corresponding user load or not.

According to Figure 4, most of the overhead is from “DFI check.” It also shows that RDT access
(excluding “RDT search”) contributes little to the overhead. This confirms that the bottleneck
is not memory access but “DFI check” instructions. Specifically, many comparison and branch
instructions are executed for each “DFI check,” which compares the identifier found in RDT with
each identifier in RDS of the corresponding user load. Although this check computation is fairly
simple, it is performed for a huge volume of data.

6 OVERVIEW OF PROPOSED APPROACH

Our approach is to delegate DFI enforcement to another computing resource external to the main
processor where the user program is executed. The delegated resource can be a processor core
in a Chip Multiprocessor (CMP) or a Processing-In-Memory (PIM) processor [4]. The two
options are similar in terms of the overhead reduction. We will use PIM as an example platform to
describe our approach, while the same idea is applicable to the CMP core option.

The PIM processor undertakes most of the DFI verification components analyzed in Section 2
and can quickly access RDSs and RDT in its vicinity. As such, what remains for the main processor
to do is to collect target instruction information discussed in Section 2 and send it to PIM. Although
the information collection and transmission can be implemented with software in a way same as
multithreading, our study shows that such a software approach still experiences huge or even
worse performance overhead. Thus, we propose a hardware approach to minimize extra software
executions at the main processor.

The proposed system is depicted in Figure 5, which consists of three main blocks:

(1) Offline program analysis and instrumentation (Section 7).
(2) Runtime information collection (Section 8).
(3) PIM-based DFI Enforcement (Section 9).

Offline Program Analysis and Instrumentation: According to Section 2, RDSs of the
user program are required by DFI enforcement. Since RDS of each instruction is static, offline
program analysis can be applied to the user program once and RDSs can be loaded into the

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:8 L. Feng et al.

Fig. 5. The proposed system and the flow of PIM-based DFI enforcement.

memory when the user program starts. Besides, the software instrumentation is introduced for
generating the target instruction information, which can be used by the hardware in the Runtime
Information Collection block. In Figure 5, the underlined instructions are for instrumentation. One
example is info “load, id = 12,” which indicates the former instruction is load, with the
identifier 12.

Runtime Information Collection: The target instruction information generated from the
instrumentation needs to be transferred to the PIM processor. The information transfer is per-
formed by the dedicated hardware module named info-collector designed in the main processor.
Info-collector parses the instrumented instruction for the target instruction information, and it
can optimize the size of the information, which is sent to the memory while the software program
is being executed.

PIM-based DFI Enforcement: This block contains the PIM processor, which performs the DFI
checking after receiving the target instruction information from the main processor and accessing
RDS and RDT in the memory. With the collaboration of the three blocks, complete runtime DFI
enforcement is realized.

Putting It All Together: Figure 5 shows the overall flow of the proposed DFI enforcement,
where the circled numbers indicate the step ID:

1 Static analysis is performed for a user program.
2 RDSs are obtained from the static analysis.
3 The codes are instrumented automatically. The main instrumentation is to add instructions

for encoding the target instruction information after each target instruction so as to help
collect its information. The instrumented instructions are underscored in Figure 5.

4 The DFI checking program and RDS are loaded onto the PIM processor before the user
program execution starts on the main processor.

5 During program execution, the info-collector parses each instrumented instruction, collects
target instruction information accordingly, forms a DFI packet, and sends it to the PIM
processor, where enforcement computations are performed or RDT is updated.

In the following sections, the details of the three blocks are elaborated.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:9

7 SOFTWARE INSTRUMENTATION

Instrumentation is to add additional code into a user program to facilitate the DFI enforcement.
The software instrumentation in our approach helps not only to extract the necessary information
but also avoid changing the instruction set.

As shown in the Offline Program Analysis and Instrumentation block in Figure 5, a user
program is automatically instrumented by the software we developed after getting the Reaching

Definition Sets (RDSs) from the static analysis. The instrumentation mainly adds the instructions
that generate the runtime information of target instructions, which can be parsed by the info-
collector. Assuming the instrumented instruction is info, the basic syntax is

info runtime_info.

When info is executed in the main processor, the runtime_info is transferred to the info-
collector. A simple way to realize the info instruction is to extend the instruction set. However,
Instruction Set Architecture (ISA) extension requires much more changes across the computing
stack including both software and hardware, thereby introducing more engineering efforts and
cost. To avoid this, we propose another approach to implement the info instruction by overloading
the store instruction. These instrumentation store instructions are called DFI store, of which
we overload the use with underlying semantics different from ordinary store instructions. Our
key technique is to differentiate between ordinary store and DFI store without adding new
instructions. The basic syntax of the DFI store is

store runtime_info dfi_global,

where runtime_info is a constant value including the runtime information, and dfi_global is
the address (the pointer) of a global variable declared at the beginning of a program and serves as
a signature to indicate a DFI store. The address of this global variable is set by writing a dummy
value at the beginning of a program as

store dfi_dummy dfi_global.

The dfi_dummy is a dummy value that has a fixed value to obtain the destination address of
dfi_global. The info-collector can obtain dfi_global by identifying the first store in a pro-
gram that stores dfi_dummy to an address. For example, dfi_dummy can be designed as 123456.
Once store 123456 11122 is executed, the info-collector assigns 11122 to dfi_global, and
dfi_global can only be assigned one time for a user program.

The info-collector (dotted box in Figure 5) checks if the target address of a store instruction is
the same as dfi_global. If so, then the instruction is a DFI store and the runtime information is
extracted and sent to PIM.

There are three scenarios where the instrumentation is needed:

(1) For each ordinary store or load instruction, its target instruction information is required
by DFI, thereby instrumentation is needed.

(2) The source code of a library function is not necessarily accessible to the users, but instru-
mentation can still be performed to obtain the target instruction information if the library
functions are for memory accesses. This is similar to the wrapper [7] in theory, but our
implementation is hardware-based but not software-based.

(3) Function return addresses are stored on stack and vulnerable to attacks such as
Return-Oriented Programming (ROP) [27]. We treat their accesses as implicit
load/store instructions and perform DFI enforcement accordingly. When a parent function
parent_func() calls a child function child_func(), the return address is stored on the
stack by an instruction parent_inst. When function child_func() returns, the return

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:10 L. Feng et al.

Fig. 6. An example of code instrumentation.

address is loaded by a return instruction child_inst. DFI ensures that the return address
used by child_inst should be the latest value stored by parent_inst. To enforce the DFI
of function return addresses, we need instrumentation for generating the target instruction
information of function calls and returns.

7.1 Instrumentation for DFI Enforcement

The instrumentation is mainly to extract the runtime information of the load/store instructions
in a user program related to DFI checking and sent to the PIM processor. The information includes
instruction identifier, instruction type, and target address of load/store. Instruction identifiers
are automatically assigned by the instrumentation tool.

Every store and load instruction in a user program, called target instruction, is followed by
a DFI store. The runtime_info of the DFI store contains the instruction type and identifier of
the preceding target instruction. For example, in Figure 5, line 2 is an instrumentation instruction
info “load, id = 12” that is implemented by store “load, id = 12” dfi_global, which
tells the instruction type and identifier of the target instruction in line 1. To encode the instruction
type and identifier, according to Reference [7], 16 bits are sufficient for representing instruction
identifiers in a large program. We use an additional bit to indicate instruction type, where 0 means
write and 1 means read. When the info-collector recognizes a DFI store, it extracts the target
address of the preceding target instruction. The target address and the runtime_info form a DFI

packet to be sent to PIM.
At the beginning of code execution, a memory space is dynamically allocated at the PIM proces-

sor for DFI enforcement. This includes the memory space for storing incoming packets, which is
called packet FIFO memory. The starting address of packet FIFO memory is packet_mem_addr,
which is also a dynamic value. Similar to dfi_global, packet_mem_addr is also set by writing a
dummy packet at the beginning of a program as

store packet_dummy packet_mem_addr.

Later during the code execution, all DFI packets are sent to FIFO memory based on
packet_mem_addr. Please note that dfi_global and packet_mem_addr are generated by the auto-
matic code instrumentation and not visible to security attackers. Besides, only the info-collector is
allowed to control the memory controller to send data to the FIFO memory after packet_mem_addr
is set. Any other attempts for accessing the FIFO memory in the main processor are identified as
violations.

An example of the instrumentation is shown in Figure 6, where lines 7 and 10 are the original
instructions in the user program, while lines 2, 3, 4, 5, 8, and 11 are instrumentations. The identifiers
of the instructions at lines 7 and 10 are in the parentheses (12 and 25). The data of a DFI store
(lines 8 and 11 in Figure 6) has bit 16 for instruction type and bits 15–0 for an instruction identifier.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:11

Fig. 7. The instrumentation for library functions.

7.2 Handling Library Functions

A program often calls library functions, whose source code is not necessarily directly accessible.
This makes it hard to directly instrument the DFI stores inside the library functions. Reference [7]
proposed a wrapper approach for solving this problem, and we propose its implementation scheme
to effectively enforcing DFI for library functions by instrumenting the DFI stores outside a
library function. As a library function call may involve a multi-byte data block in general, the
instrumentation needs to keep track of data-length besides data address. To include these kinds of
information in runtime_info of the DFI store, multiple DFI stores are required. In detail, our
approach is illustrated using the example in Figure 7.

In this example, the target instructions are the function calls in lines 5 and 11, with their
identifiers in parentheses. The instrumentation for each library function call includes multiple
DFI store instructions like lines 1–4 for the target instruction of line 5. The first DFI store
keeps the corresponding identifier in its lower 16 bits. Its bits 17–20 are four binary indicators
telling if the target instruction is a library function call or not, if the data-length needs 64 bits
to represent or not, and if the function loads/stores data or not. The info-collector parses these
indicators and then takes corresponding actions. Additional DFI store instructions are added to
send other information. For example, lines 2 and 3 send load and store addresses. Depending on if
the data-length is represented in 32 or 64 bits, the data-length needs to be sent through a single or
two DFI store instructions. For example, line 4 sends the data-length in a single DFI store, while
lines 9 and 10 send in two DFI store instructions.

If the arguments of a library function call do not include the data address or data-length,
or the function is called by an indirect branch instruction, the approach in Figure 7 cannot be
directly applied. Instead, more complex instrumentation schemes and library function overriding
are needed. Since enforcing DFI for library functions is not the main focus of this work, we leave
it as the future work.

8 HARDWARE DESIGN

In Figure 5, the info-collector in the Runtime Information Collection block is the key hardware
component to be added to the main processor. It detects DFI store instructions, collects runtime
information of target instructions, generates DFI packets, and sends them to PIM. Due to the
existence of three instrumentation scenarios, the info-collector needs to first identify the sce-
nario and generate a DFI packet accordingly. The DFI packet is then sent to the FIFO memory.
Besides, since transferring data to the memory can lead to performance overhead, data com-
pression and runtime optimization are applied. The design details are described in the following
subsections.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:12 L. Feng et al.

Fig. 8. Operations of info-collector.

8.1 DFI Packet Generation

Info-collector can be realized as a hardware circuit through synthesizing Verilog description. Its
basic operations are depicted in Figure 8.

The info-collector acts only when a store instruction is executed. In step B of Figure 8, it checks
if dfi_global and packet_mem_addr have already been defined. If not, then it proceeds to step
C to capture dfi_global or packet_mem_addr. Please note “store dfi_dummy dfi_global”
and “store packet_dummy packet_mem_addr” are instrumented at the beginning of a program.
Moreover, both dfi_dummy and packet_dummy have signature values that can be recognized by
the info-collector. If they have already been defined, then the info-collector further checks if the
store is a DFI store. This is by examining if the target address is the same as that of dfi_global.

If this store is a DFI store, then the info-collector parses the indicators in the data part of
the DFI store and tells if this is to verify load/store for DFI enforcement, function return, or a
library function call. If this instrumentation is for a load/store instruction, then the info-collector
collects instruction type and identifier from this DFI store instruction, and the target address from
the previous instruction. These pieces of information form a basic packet (“data” in Figure 5)
to be sent to PIM, which stores the packet to the address of the allocated packet FIFO memory
(“addr” in Figure 5).

If this DFI store is for a return address protection (step H in Figure 8), then the info-collector
takes the identifier and instruction type from this DFI store and extracts the pointer to the return
address from the next DFI store. This information also forms a basic packet. If this DFI store
is for a library function (step G), then the indicators of this store tell if the library function is to
load data, store data or not, and if the data-length needs to be encoded by 64 bits or not. Next, the
info-collector continues to collect additional information from subsequent DFI store instructions
and generates a library packet to be sent to PIM.

If the store instruction is a part of the user program (step J), i.e., not a DFI store, then its data
is relayed to memory without any change and its target address is stored in a local register for
future use.

8.2 Packet Transfer to PIM

A memory space is allocated to store DFI packets sent from the main processor. It is used as a
packet FIFO to store and process the packets in a first-come-first-serve manner. To maintain the
FIFO nature using a region of random access memory with low overhead, we develop circuit design

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:13

Fig. 9. Examples of address locality.

techniques to maintain the head and tail pointers in hardware, where the head pointer is updated
by PIM (consumer) and tail pointer is updated by the main processor (producer).

8.3 Lossless Data Compression

The main reason for performance overhead of PIM-based DFI is transferring DFI packets to
memory. Although each DFI packet has only a few bytes, the number of DFI packets is huge and the
overall impact is significant. We propose to compress target addresses and identifiers by exploiting
locality. The compression is realized in the info-collector hardware.

Consider the two C program examples in Figure 9. For example A, assume the starting memory
address of aa is 0 × 8000, then the program stores data at 0 × 8000, 0 × 8004, 0 × 8008, and so
on. Starting from i = 1, each target address increases by 4 compared to the previous one. Thus,
we only need to send the increment in 4 bits, which include 1 sign bit, instead of a 32-bit address.
Example B in Figure 9 is similar, but has an address pattern of 0× 8000, 0× 8400, 0× 8800, and so on.
Although the address increment 0 × 400 is relatively large and needs 11 bits to represent, the lower
bits of the increment are all 0s. Thus, instead of using integer compression, we use a format similar
to floating point number representation to further reduce the bitwidth of the address increment.
This format consists of a sign bit, significand, and exponent of 16. To represent 0 × 400, the sign
bit is 0, there are 3 bits for significand to represent 4 and the exponent is 2. Overall, the bitwidth
is 6, which is shorter than the 11-bit binary encoding. The floating point number representation
contains 8-bits, 1 sign bit, 4 bits of significand, and 3 bits of exponents (the power of 16). This
representation can cover the range from −15 × 228 to 15 × 228. The info-collector calculates the
difference between two target addresses. If the difference is within this range and the significand
is within −15 to 15, then the difference is represented by an 8-bit floating point number. Note
that the difference is compressed only when it can be represented in this format with a 16-basis
exponent.

Identifiers can also be compressed based on their value locality. However, they rarely have the
patterns like example B, where the increment is at the middle bits of an address. Thus, the difference
between two identifiers is represented by a binary number. Overall, a DFI packet can be compressed
to 15 bits. Thus, we can pack two compressed packets into one word.

8.4 Runtime Optimization

We develop packet pruning techniques and a technique for increasing the opportunity of locality
for data compression. These optimization techniques help reduce the amount of data sent to PIM
and thereby further decrease performance overhead. Some pruning techniques described here are
similar to those in Reference [7]. However, the pruning techniques in Reference [7] are offline,
while our hardware approach allows pruning at runtime. As more information, such as target
address, is available at runtime, the opportunity of pruning is increased.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:14 L. Feng et al.

Similar to data transfer between memory and cache in cache lines, we pack multiple DFI
packets into a block of hundreds of bytes before sending them to PIM. The packets in a block are
organized in a transmission buffer, which is implemented as a register file. The optimizations
are performed for packets in the buffer before they are sent out. Note that waiting for other packets
to form a block increases DFI enforcement latency but does not increase performance overhead.

Consider two pairs of basic packets in the transmission buffer, (P1, P2) and (Q1,Q2). Each basic
packet is for instruction load, store, or function return. Packet P1 (Q1) precedes P2 (Q2). The
packets of each pair share the same target address and there is no other DFI packet for store of
the same target address between them. There are five optimization techniques described using the
packet pairs:

A: If P1 and P2 are for store instruction, and there is no other DFI packet for a load with the
same target address between them, then packet P1 is redundant and can be pruned out without
being sent to PIM.

B: If P1 and P2 are both for store instruction, and their identifiers are the same, then P2 can be
pruned out.

C: If P1 and P2 are both for load instruction, and their identifiers are the same, then P2 can be
pruned out.

D: P1/P2 are for store/load of the same target address Addr1. After P1 and P2, packetsQ1 andQ2

are for store/load of the same target address Addr2. P1/P2 have identifiers α /β , respectively.
If Q1/Q2 also have identifiers α /β , respectively, thenQ1 andQ2 are redundant. This is to make
sure that the same store/load pair appears only once in the transmission buffer. An example
is shown in Figure 10(a), where the table is the packets in the transmission buffer, with each
line representing a basic packet. The last line represents the latest packet. “S/L” represents the
instruction type (“S” for store and “L” for load), and “Tar Addr” represents the target address.
In this example, Q1 and Q2 are redundant.

E: All basic packets in the transmission buffer are sorted according to their target addresses. If
two packets have the same target address, their relative order keeps unchanged. If there is a
library packet, the basic packets before and after this library packet are sorted separately. After
sorting, the target address difference between two adjacent packets is examined to find if data
compression can be performed. The sorting helps find opportunities for data compression. The
verifications in DFI enforcement for load/store of different target addresses are independent
of each other and hence sorting does not affect DFI enforcement results. An example is shown
in Figure 10(b), where the left table is the packets in the transmission buffer before sorting.
Before sorting, the difference of the target addresses between each pair of adjacent packets is
large, which is hard for compression. After sorting, we found two groups of packets that can
be easily compressed by our compression approach. Note that the sorting is performed before
and after the library packet separately.

Among the optimizations, A, B, and C are similar to those in Reference [7] except that they
can be performed both offline and at runtime while those in Reference [7] are restricted to offline.
Techniques D and E are newly developed in this work. After the optimizations are performed, a
packet is compressed if possible.

8.5 Circuit Implementation of the Optimizations

All the five optimizations can be realized in circuits for runtime use in the main processor. We
illustrate the circuit designs by using optimization C as an example.

The schematic of combinational circuit implementation of optimization C is shown in Figure 11.
Assume there are n basic packets in the transmission buffer, Pi represents the ith packet, and Ri

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:15

Fig. 10. (a) The example for illustrating optimization D. (b) The example for illustrating optimization E.

Fig. 11. Circuit for implementing optimization C.

indicates if the ith packet is redundant or not. Each square in Figure 11 is a Processing Element

(PE) that computes if a packet is redundant or not. In each column of Figure 11, a packet Pi is
compared with all later packets Pj, j > i and attempts to find a redundant Pj to be pruned. If there
are multiple packets that are redundant with respect to Pi , then only the topmost one (with the
smallest |j − i |) is asserted for pruning and the others can be pruned later in other columns to the
right. The R signals in a row areORed such that a packet in a row can potentially be pruned by any
proceeding packets organized in columns. For example, P3 in row 3 can be potentially pruned by
P0, P1, or P2 in the left three columns. Like illustrated in the dotted box, a PE compares two input
packets Pa and Pb. A necessary but insufficient condition for asserting R = TRUE is that Pa and
Pb are both for load with the same target address and identifier. The final result of R also depends
on Din, which is a disable signal for the pruning. The value of R = TRUE when Din == 0 and the
necessary condition holds. There are two scenarios where the disable signal asserts: (1) there is a
store at the same target address between the two load instructions of Pa and Pb, and thus the
conditions for optimization C is not completely satisfied; (2) a redundant packet has already been
found and no further pruning is needed in a column. For scenario (1), Dout = 1 when Pa is for
load while Pb is for store. For scenario (2), Dout = 1 if R = TRUE for the same PE.

9 DFI CHECKING PROGRAM AT PIM

In the PIM-based DFI Enforcement block in Figure 5, the DFI checking program at the PIM proces-
sor continuously reads DFI packets from the FIFO memory and either performs DFI enforcement
or updates RDT. For different types of DFI packets, the PIM processors take different actions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:16 L. Feng et al.

The DFI checking program is written in C language, and its binary code is executed on the
PIM processor. The RDT memory space is allocated by the instrumentation code. Same as in
Reference [7], all program data are organized in words, each of which requires one RDT entry.
If the data memory for the user program has N bytes, there are N /4 entries in the RDT [7]. Since
each identifier has 16 bits = 2 bytes, the RDT uses N×2

4 = N /2 bytes of memory.
There are three kinds of DFI packets to be processed by the DFI checking program.

• Basic packet for store or load: The DFI checking program extracts instruction type, identifier
α and target address β from the packet. If the instruction type is store, then identifier α is stored
at entry β >> 2 of RDT. The right shift is performed because RDT is organized in words. If the
instruction type is load, then the DFI checking program reads identifier γ from entry β >> 2
of RDT and loads the RDS of identifier α . Then, the program checks if γ is in the RDS of α or
not. If not, then a DFI violation is reported. Finally, identifier α and target address β are saved
in registers for future decompression of compressed packets.
• Compressed packet for store or load: The process is similar to handling basic packets except

that decompression is performed.
• Library packet: The DFI checking program extracts target address α if there is load in the

library function call, and target address β if there is store. Then, data-length γ (in words) of the
load and/or store and identifier δ of this function are also extracted. If there is an address
α , then the DFI checking program loads the identifiers ϵ0, ϵ1 . . . ϵγ−1 from entries α >> 2,
(α >> 2) + 1, . . . (α >> 2) + γ − 1 in the RDT and checks if every ϵi is in the RDS of identifier
δ . If there is address β , then the program stores identifier δ to all the entries from β >> 2 to
(β >> 2) + γ − 1 in the RDT.

10 EXPERIMENT

10.1 Experiment Setup

This section describes the experimental setup and the modeling and evaluation methodology.
Software Analysis and Instrumentation: The programs used in our article are based on

C/C++ and compiled by LLVM [22] and the static analysis is performed by an extended SVF [32].
The instrumentation is performed on the program’s LLVM Intermediate Representation (IR) by
our software without interacting with LLVM. Then, the instrumented program is further compiled
into binary code. Besides, our techniques are general and directly applicable to other programming
languages supported by LLVM. Note that compilers, static analysis tools, and the static analysis
itself is out of the scope of this work.

System Configuration and Modeling: We evaluate our approach and the proposed tech-
niques using architecture simulations through SMCsim [4, 28], which is an extension to the gem5
simulator [33] for accommodating PIM. The main processor is an ARM Cortex-A15 with 2 GHz
frequency, 32 KB L1 instruction cache, 64 KB L1 data cache, 2 MB L2 cache, and 512 MB memory. A
single PIM processor is used and operates at 2 GHz frequency [25, 40]. 64 MB memory is allocated
for RDT, which is sufficient for the test cases in our experiment. Other details of the PIM can be
found in References [4, 28]. Please note that the PIM configuration has little impact on the user
program execution.

Security and Performance Evaluation: For security analysis, we used the RIPE benchmark
suite [37] for control-data attacks and tested on Heartbleed vulnerability [34] and Nullhttpd heap
overflow vulnerability [23] for non-control data attacks. In addition, we used SPEC CPU 2006 [31]
benchmark suite for performance evaluation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:17

Table 2. The Configurations of RIPE Tests

Dimensions
Overflow

Technique
Attack Code Target Code Pointer Location

Function

Abused

Configurations direct, indirect
rop, createfile,
returnintolibc

ret, baseptr, funcptrstackvar, funcptrstackparam,
structfuncptrstack, funcptrheap,

structfuncptrheap, structfuncptrbss, funcptrdata,
structfuncptrdata

stack,
heap, bss,

data

memcpy,
strncpy,
strncat

10.2 Security Analysis

Our approach enforces the same DFI as defined in Reference [7] and thus achieves similar security
as Reference [7] except that our approach is asynchronous monitoring [9, 19, 39], where detection
of DFI violation can trigger system interrupt for further security measures, rather than synchro-
nous enforcement like Reference [7]. This difference is a tradeoff between security and service
availability. Synchronization inevitably entails extra performance overhead, as DFI enforcement
blocks user program executions.

10.2.1 RIPE Benchmark. RIPE [26, 37] is a well-known benchmark containing various control-
flow attacks, and all control-flow attacks can be identified by DFI. RIPE is originally designed
for X86 architecture and modification is required for executions on an ARM processor. We imple-
mented 156 attacks of the benchmark for our system, including Return-Oriented Programming

(ROP) [27] attacks and Jump-Oriented Programming (JOP) [6] attacks. Table 2 shows the con-
figuration dimensions and possible configurations of RIPE, where “Overflow Technique” indicates
whether the attack target can be directly reached by sequentially overflowing from a buffer. “Attack
Code” is what the attack payload is. “Target Code Pointer” is the target to be attacked. “Location”
is the location of the attack target. “Function Abused” is the function used to modify the data [37].

We tested all the valid combinations of the five dimensions’ configurations, which results in 156
valid attacks in total. No configuration is ignored in each dimension, except “Function Abused,”
which is only for copying data by different functions, and this does not affect the key idea of
the attack. Different functions in “Function Abused” need different dedicated instrumentation to
obtain the store/load addresses and data-lengths, as described in Section 7.2, which needs manual
design. To avoid too many engineering efforts, we tested three typical functions: memcpy, strncpy,
and strncat.

In addition, we prepared a RIPE program without any attack to test if there is any false alarm
or not. It is observed that our DFI system successfully identifies all the 156 attacks and does not
make any false alarm for the case without the attack.

10.2.2 Heartbleed. Heartbleed (CVE-2014-0160) [34] is a vulnerability in OpenSSL cryptogra-
phy library. When a message, including the payload and the length of the payload, is sent to a
server, the server echoes back the message with the claimed length. However, it is not checked if
the actual payload length is the same as the claimed one. As such, an attacker may send a message
with the actual payload length smaller than the claimed one. Then, the server sends back not
only the original payload but also some additional data, which might be private sensitive data,
to fulfill the claimed length. Consequently, sensitive data is stolen by the attacker. We use the
source code in Reference [35] to simulate such an attack. This attack is successfully detected by
our DFI enforcement as the data to be loaded for sending back cannot be most recently written
by an instruction not from the sender. An attack-free transaction, where the actual payload length
conforms to the claimed one, is also tested and no false alarm is made by our approach.

10.2.3 Nullhttpd. Nullhttpd is an HTTP server that has heap overflow vulnerability (CVE-2002-
1496) [23]. If the server receives a POST request with negative content length L, then it should not

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:18 L. Feng et al.

Table 3. Scenarios for Figure 2 where HDFI Fails

HDFI Our approach

u0 u1 u2 Missed overflow detect?

Tag 0 Tag 0 Tag 0 u0⇒ u1, u0⇒ u2, u1⇒ u2 Yes

Tag 0 Tag 0 Tag 1 u0⇒ u1 Yes

Tag 0 Tag 1 Tag 0 u0⇒ u2 Yes

Tag 0 Tag 1 Tag 1 u1⇒ u2 Yes

Tag 1 Tag 0 Tag 0 u1⇒ u2 Yes

Tag 1 Tag 0 Tag 1 u0⇒ u2 Yes

Tag 1 Tag 1 Tag 0 u0⇒ u1 Yes

Tag 1 Tag 1 Tag 1 u0⇒ u1, u0⇒ u2, u1⇒ u2 Yes

process the request. However, the server continues to process and allocates a buffer of L + 1, 024
bytes, which is less than 1,024 bytes. Later, the server writes data of 1,024 bytes into the buffer,
and therefore buffer overflow occurs. The experiment shows that our method successfully detects
such buffer overflow. When some load instruction attempts to access the data written by overflow,
it is found that the data is not written by any instructions in the RDS of the load instruction. An
experiment is also conducted to confirm that our approach does not produce false alarm in this
context.

10.2.4 Comparison with HDFI and TMDFI. To compare the security between our approach
and Hardware-assisted Data-Flow Isolation (HDFI) [30], we exhaustively tested different tag
schemes of HDFI for the example of Figure 2, which are listed in the left three columns of Table 3.
For each tag scheme, there is some overflow that cannot be detected by HDFI as shown in column
4, where u0⇒ u1 means some data of user0 is written into user1’s space through overflow. By
contrast, our approach can successfully detect all these overflows.

For TMDFI [20], although there is a significant improvement over HDFI, its enforcement
resolution is still far from enough in many applications. Figure 12 shows the numbers of identifiers
needed for several benchmarks, which are hundreds or tens of hundreds. Hence, the gap between
the 256 regions by TMDFI [20] and the actual needs is large. By contrast, our approach can
accommodate all identifiers in these benchmarks and achieve complete DFI with an overhead
similar to TMDFI.

In conclusion, although both HDFI and TMDFI are able to identify the attacks in RIPE bench-
mark, Heartbleed attack, and the attack to Nullhttpd, the data can only be separated into the limited
regions. Therefore, for a typical real-world program, it is possible that the attacks performed in the
same region can pass the checking of HDFI and TMDFI, while our approach can defend against.

10.3 Performance Overhead

Performance overheads of the following methods are evaluated through simulations on the SPEC
CPU 2006 benchmark [31]:

• Software. This is the original software DFI by Reference [7].
• HBM. This is similar to Reference [7] except that High Bandwidth Memory [15, 18] is employed.
• CMP. This is a parallel approach, where DFI enforcement is performed in another core in CMP

with two versions: the software version CMP-S (multithreading) and the hardware version
CMP-H using our info-collector circuit.
• PIM. This is the proposed hardware-assisted parallel approach using PIM.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:19

Fig. 12. The number of identifiers of each benchmark.

Table 4. Performance Overhead of DFI

Software [7] HBM CMP-S CMP-H PIM (No Compression or Optimization) PIM (512B Buffer) PIM (2KB Buffer)

Column ID 1 2 3 4 5 6§ 7 8 9 10 11 12 13

Compression × × ×
√

× ×
√

×
√ √ √ √ √

Transmit Buf Size - - - 2KB - - 2KB 2KB 512B 512B 2KB 2KB 2KB

Runtime Optimization × × × All × × E A,B,C,D All C,E All C,E C,E

#Gates in Info-Collector - - - † <2908† † † † † 116,769‡ † † 753,666‡

B
e
n

ch
m

a
rk

401.bzip2 218.7% 219.5% 543.3% 43.7% 313.4% 34.6% 40.0% 44.7% 40.8% 43.2% 37.9% 38.6% 39.8%

429.mcf 105.0% 105.6% 320.5% 28.8% 191.6% 18.9% 24.3% 27.1% 25.7% 26.8% 23.9% 24.1% 24.8%

433.milc 80.9% 82.7% 256.6% 24.1% 150.0% 22.5% 25.5% 24.1% 25.3% 26.6% 23.4% 24.4% 25.0%

445.gobmk 179.0% 179.0% 463.0% 59.4% 272.3% 46.9% 54.8% 56.5% 55.9% 57.7% 53.5% 54.3% 55.3%

456.hmmer 233.4% 233.5% 1087.6% 60.9% 510.7% 47.2% 55.5% 64.2% 57.9% 60.8% 53.0% 53.0% 55.0%

458.sjeng 372.6% 374.2% 226.9% 29.4% 128.6% 24.6% 28.0% 28.5% 28.6% 29.4% 27.3% 27.6% 28.2%

462.libquantum 61.2% 61.2% 262.2% 22.5% 156.4% 21.9% 23.9% 23.2% 24.2% 25.0% 22.6% 22.7% 23.3%

464.h264ref 205.3% 205.8% 544.0% 44.5% 275.7% 33.9% 42.1% 42.4% 42.8% 45.2% 39.9% 41.0% 43.1%

473.astar 116.6% 116.6% 442.0% 38.2% 255.7% 31.6% 36.9% 38.4% 37.2% 39.1% 35.2% 35.5% 36.5%

482.sphinx3 41.4% 41.6% 123.0% 18.7% 74.4% 32.1% 33.4% 33.4% 33.6% 33.9% 33.1% 33.1% 33.3%

Average 161.4% 162.0% 426.9% 37.0% 232.9% 31.4% 36.4% 38.2% 37.2% 38.8% 35.0% 35.4% 36.4%

†Computation time of optimizations and compression is neglected.
‡Computation time of optimizations and compression is considered.
§No DFI packet is sent to the memory.

Our proposed approach has two variants: CMP-H and PIM. As architectural simulations us-
ing gem5 are many orders of magnitude slower than real system runs for accurately modeling
hardware behaviors, we manage to terminate the simulations to run the region of interest of the
program for sufficiently long time while accounting for a reasonable simulation time. To ensure a
fair comparison, each application was terminated at the same point in the simulations. The results
are summarized in Table 4.

On average, the performance overhead of software DFI [7] is 161%, as shown in column 1.
Column 2 shows the result of software DFI using HBM, where the memory bandwidth is abundant
and memory access latency is fairly low. One can see that using HBM brings almost no overhead
reduction. This result confirms the analysis in Section 5. The results of the parallel approach using
another CMP core are summarized in columns 3 and 4, for software and our hardware version,
respectively. Without dedicated hardware, the parallel approach actually increases the overhead
due to the expensive communication in software. CMP-H reduces the overhead to 37%.

The PIM results are listed in columns 5–13, where “All” means all of the five optimization
techniques are applied and “C, E” corresponds to the results where only the two most effective

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:20 L. Feng et al.

Fig. 13. Overhead vs. buffer size.

Fig. 14. Effects of optimization techniques.

optimizations are employed. In column 5, the overhead is 233% although the offline optimization
has been applied. This tells the importance of our hardware-based optimization and compression.
In column 6, we dropped all DFI packets without sending them out by simulating only instruction
fetching but not executions of instrumentation. This is not realistic for DFI, but is to obtain a lower
bound for the overhead, which is about 31%. Column 7 shows that the joint effect of data compres-
sion and optimization E is dramatic. Please note optimization E is designed for increasing the
chance of data compression. The setup for column 11 is very similar to column 4, except that one
is by PIM and the other is by CMP. Examining the results of the two columns that their overhead
reductions are similar. PIM is a little better, as it causes less cache contentions as CMP. Column
13 takes the two most important optimizations and considers the compression/optimization delay,
showing an overhead of about 36%.

The effect of transmission buffer size on reducing performance overhead is plotted in Figure 13.
It shows that an increase of buffer size from 0 quickly brings down the overhead. However, the
reduction soon diminishes as buffer size reaches 2K bytes, and this is why we limit the buffer size
to be no more than 2K in our experiments.

The effects of the five optimization techniques described in Section 8.4 on data reduction are
evaluated separately, and the results are depicted in Figure 14. It shows that optimizations C and E
always lead to more data reduction than the other techniques. For 462.libquantum, optimization C
can reduce data by over 80%,while optimization E reduces data by more than 60% for both 401.bzip2

and 456.hmmer. Optimization E is designed to facilitate compression, and one can observe that its
average data reduction is 46%, which is also the average compression ratio.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

Toward Taming the Overhead Monster for Data-flow Integrity 25:21

Fig. 15. Detection latency vs. overhead for 429.mcf and 462.libquantum.

10.4 Tradeoff between Detection Latency and Overhead

Ideally, the latency for detecting DFI violations need to be minimized so attackers have less time to
complete damaging operations. In Figure 15, we show that the latency can be managed by a tradeoff
with the overhead via varying the buffer size. The results also indicate that the PIM approach
performs better for low overhead, while the CMP-H approach is slightly better for obtaining low
latency. The reason is, as discussed in Section 10.3, PIM causes fewer cache contentions as CMP and
leads to less overhead. However, due to the data transferring latency from the main processor to
the PIM and the relatively low performance of PIM, using PIM has longer latency than using CMP.

10.5 Binary Size and Hardware Circuit Overhead

Performing instrumentation can increase the size of the executable binary of the user program.
As shown in Figure 16, our approach only increases the binary size by 10%, on average, while
software-DFI can increase the size by 35%, which is 3× as our approach. Note that the amounts of
the instrumentation are the same for PIM, CMP-S, and CMP-H.

The info-collector circuit is implemented by synthesizing Verilog using Synopsys Design
Compiler and ASAP 7nm cell library [3]. The info-collector with basic operation and compression
costs only 2,908 gates and less than 30 ps circuit delay. Hence, its area and delay are negligible. We
also implemented the circuit for optimization C/E. The results with these implementations are in
columns 10 and 13 of Table 4, where the gate counts of the info-collector with different buffer sizes
are listed. The hardware circuit overhead is dominated by the optimization part. The gate count of
754K is not trivial, but still a small fraction of a modern microprocessor, which often has hundreds
of millions of gates. Moreover, our DFI can isolate data among 64K regions, and the hardware cost
per region is no more than 12 gates. Although the hardware overhead of our approach is still high
for practical use of many current civil applications, there can be niche applications, where security
is super critical while hardware cost is of little concern, such as some military applications. More-
over, as security problems become increasingly prevalent and hardware cost continues to decrease,
there can be a point in future where the hardware cost becomes justified for the achieved security.
The works of CHERI [36] and HDFI [30] did not describe their hardware details. However, HDFI
can isolate only between 2 regions, and its hardware cost is almost impossible to be less than 24
gates. Therefore, it is highly possible that the hardware cost per region of our approach is less than
HDFI.

The memory overhead of our approach is N /2 and the size of the RDSs if the user program
needs N bytes data memory, and CHERI and HDFI have much less memory overhead than us. In
our design, we trade more memory space for higher security.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

25:22 L. Feng et al.

Fig. 16. The executable binary size overhead of different benchmarks.

11 DISCUSSIONS

In this section, we discuss the tradeoff and limitation of the asynchronous enforcement, as well as
potential supports to OS.

The Asynchronous Enforcement: Different from other works such as the software DFI [7],
CHERI [36], and HDFI [30], of which the DFI enforcement approaches are synchronous, our
approach is asynchronous and has detection latency. The security risk due to asynchronous
checking is a price paid for the performance overhead reduction compared to the software DFI.
However, the proposed approach arguably still provides a higher level of security than CHERI
and HDFI, where a large amount of attacks are completely undefended. Specifically, if an attacker
violates DFI for two data in one region for HDFI, then this violation cannot be detected by HDFI.
Although our asynchronous check leaves a brief window before stopping the program execution,
any followup attacks must be carried out within this window and the threshold for such attacks
is significantly raised. In contrast, in many cases, attackers can launch attacks without such
restrictions for systems with HDFI.

The Supports to the OS: User programs and OS are two main application scenarios of DFI.
Our main focus is the principle techniques for reducing DFI overhead and working out the details
for user programs. The same principles are applicable for OS, but the implementation details are
quite different, which is out of the scope of this work.

12 CONCLUSIONS AND FUTURE RESEARCH

Data-Flow Integrity (DFI) is potentially a very powerful security measure that can detect a large
number of software attacks. However, it requires checking a large volume of data and thus in-
trinsically entails huge performance overhead. We propose a hardware-assisted parallel approach
to address this challenge. This approach can reduce the overhead by more than 4× compared to
the original software DFI while enforcing complete DFI. In future research, we will study how to
further reduce the performance overhead and detection latency.

REFERENCES

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-flow integrity. ACM Conf. Comput.

Commun. Secur. (2005), 340–353.
[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro. 2008. Preventing memory error

exploits with WIT. In IEEE Symposium on Security and Privacy. 263–277.
[3] Lawrence T. Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh Sinha, Brian Cline, Chandarasekaran

Ramamurthy, and Greg Yeric. 2016. ASAP 7nm Predictive PDK. Retrieved from http://asap.asu.edu/asap/.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

http://asap.asu.edu/asap/

Toward Taming the Overhead Monster for Data-flow Integrity 25:23

[4] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2016. Design and evaluation of a processing-in-memory
architecture for the smart memory cube. International Conference on Architecture of Computing Systems. 19–31.

[5] Ken Biba. 1977. Integrity considerations for secure computer systems. Defense Technic. Inf. Cent. (1977), 68.
[6] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-oriented programming: A new class of

code-reuse attack. In ACM Symposium on Information, Computer and Communications Security. 30–40.
[7] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by enforcing data-flow integrity. In Symposium

on Operating Systems Design and Implementation. 147–160.
[8] Jedidiah R. Crandall and Frederic T. Chong. 2004. Minos: Control data attack prevention orthogonal to memory model.

In IEEE/ACM International Symposium on Microarchitecture. 221–232.
[9] Sanjeev Das, Yang Liu, Wei Zhang, and Mahintham Chandramohan. 2016. Semantics-based online malware detection

towards efficient real-time protection against malware. IEEE Trans. Inf. Forens. Secur. 11, 2 (Feb. 2016), 289–302.
[10] Lucas Davi, Ra Dmitrienko, Manuel Egele, Thomas Fischer, Thorsten Holz, Ralf Hund, Stefan Nürnberger, and Ahmad

reza Sadeghi. 2012. MoCFI: A framework to mitigate control-flow attacks on smartphones. In Symposium on Network

and Distributed System Security.
[11] Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding control flows using intel processor trace. In

ACM International Conference on Architectural Support for Programming Languages and Operating Systems. 585–598.
[12] Zonglin Guo, Ram Bhakta, and Ian G. Harris. 2014. Control-flow checking for intrusion detection via a real-time debug

interface. In International Conference on Smart Computing Workshops. 87–92.
[13] Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Pak Ho Chung, William R. Harris, Taesoo Kim, and Wenke Lee.

2018. Enforcing unique code target property for control-flow integrity. In ACM SIGSAC Conference on Computer and

Communications Security. 1470–1486.
[14] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang. 2016. Data-

Oriented programming: On the expressiveness of non-control data attacks. In IEEE Symposium on Security and Privacy.
969–986.

[15] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho Jin, and Keith Kim. 2017. HBM (High
Bandwidth Memory) DRAM technology and architecture. In IEEE International Memory Workshop. 1–4.

[16] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur
Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Comput. Archit. News 42, 3 (2014), 361–372.

[17] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative
execution. IEEE Symposium on Security and Privacy. 1–19.

[18] Dong Uk Lee, Kyung Whan Kim, Kwan Weon Kim, Kang Seol Lee, Sang Jin Byeon, Jae Hwan Kim, Jin Hee Cho, Jaejin
Lee, and Jun Hyun Chun. 2015. A 1.2 V 8 Gb 8-Channel 128 GB/s High-Bandwidth Memory (HBM) stacked DRAM
with effective I/O test circuits. IEEE J. Solid-state Circ. 50, 1 (2015), 191–203.

[19] Yongje Lee, Jinyong Lee, Ingoo Heo, Dongil Hwang, and Yunheung Paek. 2017. Using CoreSight PTM to integrate
CRA monitoring IPs in an ARM-based SoC. ACM Trans. Des. Autom. Electron. Syst. 22, 3 (2017), 52:1–52:25.

[20] Tong Liu, Gang Shi, Liwei Chen, Fei Zhang, Yaxuan Yang, and Jihu Zhang. 2018. TMDFI: Tagged memory assisted
for fine-grained data-flow integrity towards embedded systems against software exploitation. In IEEE International

Conference on Trust, Security and Privacy in Computing and Communications/IEEE International Conference on Big Data

Science and Engineering. 545–550.
[21] Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan. 2017. Transparent and efficient CFI

enforcement with Intel processor trace. In IEEE International Symposium on High Performance Computer Architecture.
529–540.

[22] 2003. LLVM. LLVM Team. Retrieved from https://llvm.org/.
[23] 2002. Null HTTPd Remote Heap Overflow Vulnerability. Netric Security. Retrieved from https://www.securityfocus.

com/bid/5774.
[24] Thomas Nyman, Ghada Dessouky, Shaza Zeitouni, Aaro Lehikoinen, Andrew Paverd, N. Asokan, and Ahmad-Reza

Sadeghi. 2017. HardScope: Thwarting DOP with hardware-assisted run-time scope enforcement. arXiv preprint (2017).
[25] Seth H. Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalakshmi Srinivasan, Alper Buyuk-

tosunoglu, Al Davis, and Feifei Li. 2014. NDC: Analyzing the impact of 3D-stacked Memory+Logic devices on
MapReduce workloads. In IEEE International Symposium on Performance Analysis of Systems and Software. 190–200.

[26] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter Joosen. 2011. RIPE. Retrieved from https:
//github.com/johnwilander/RIPE.

[27] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-libc without function calls (on the
x86). In ACM Conference on Computer and Communications Security. 552–561.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

https://llvm.org/
https://www.securityfocus.com/bid/5774
https://github.com/johnwilander/RIPE

25:24 L. Feng et al.

[28] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. 2016. SMCsim. Retrieved from https://iis-git.ee.ethz.ch/
erfan.azarkhish/SMCSim.

[29] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William R. Harris, Taesoo Kim, and Wenke Lee. 2016. Enforcing kernel
security invariants with data flow integrity. In Network and Distributed System Security Symposium.

[30] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee, Taesoo Kim, Wenke Lee, and Yunheung
Paek. 2016. HDFI: Hardware-assisted Data-Flow Isolation. In IEEE Symposium on Security and Privacy. 1–17.

[31] 2006. SPEC CPU 2006 Benchmark. Standard Performance Evaluation Corporation. Retrieved from https://www.spec.
org/cpu2006/.

[32] Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural static value-flow analysis in LLVM. In International Conference

on Compiler Construction. 265–266.
[33] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,
Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer Architecture News 39, 2
(2011), 1–7.

[34] 2014. The Heartbleed Bug. Google Security. Retrieved from http://heartbleed.com/.
[35] Michael Macnair. 2014. The Source Code for Triggering Heartbleed Bug. Retrieved from https://github.com/mykter/

afl-training/tree/master/challenges/heartbleed.
[36] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall,

Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. 2015. CHERI: A hybrid capability-system architecture for scalable software compartmentalization. In
IEEE Symposium on Security and Privacy. 20–37.

[37] John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter Joosen. 2011. RIPE: Runtime Intrusion
Prevention Evaluator. In Computer Security Applications Conference. 41–50.

[38] 2003. Exploit Mitigation Techniques. Retrieved from https://www.openbsd.org/papers/ven05-deraadt/index.html.
[39] Yubin Xia, Yutao Liu, H. Chen, and B. Zang. 2012. CFIMon: Detecting violation of control flow integrity using

performance counters. In International Conference on Dependable Systems and Networks. 1–12.
[40] Xu Yang, Yumin Hou, and Hu He. 2019. A processing-in-memory architecture programming paradigm for wireless

Internet-of-Things applications. Sensors 19, 1 (2019), 140.

Received May 2021; revised August 2021; accepted October 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 3, Article 25. Pub. date: November 2021.

https://iis-git.ee.ethz.ch/erfan.azarkhish/SMCSim
https://www.spec.org/cpu2006/
http://heartbleed.com/
https://github.com/mykter/afl-training/tree/master/challenges/heartbleed
https://www.openbsd.org/papers/ven05-deraadt/index.html

