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Abstract—Network on chip (NoC) has surfaced as a crucial
interconnection strategy in modern digital systems, thereby
demanding meticulous verification. Due to its multiple nodes and
high concurrency, verifying an NoC is labor-intensive, making it
complex to generate a multitude of test cases. Recently, hardware
fuzzing has been identified as a promising automated approach
for hardware verification. However, when we tried to apply these
fuzzing techniques to our internally developed NoC design, we
discovered that they were incompatible with the specificities of
NoC. Additionally, they are also incompatible with the standard
IC verification workflow and universal verification methodology
(UVM) environment. In this work, we aim to automate our
verification process of NoC with fuzzing. We propose a fuzzing
strategy specifically tailored for industrial NoC UVM verification.
We employ fuzzing in NoC verification at multiple levels,
including router verification, network verification, and stress
testing. As a case study we apply our approach to an open-source
NoC component in OpenPiton. Remarkably, our fuzzing methods
automatically achieved complete code and functional coverage
in the router and mesh network. We also effectively detect
injected starvation bugs with fuzzing. The evaluation results
clearly demonstrate the practicability of our fuzzing approach
to considerably reduce the manpower required for test case
generation compared with traditional NoC verification.

Index Terms—Automatic test generation, design verification,
hardware fuzzing, network on chip (NoC).

I. INTRODUCTION

IN MODERN digital systems, network on chip (NoC) plays
an important role in serving as an interconnection solution,

which supports high-level protocols and applications [1], [2],
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[3], [4]. Therefore, it is of utmost importance to ensure the
correctness of NoC, as any undetected errors can result in the
failure of the entire chip. However, due to the complexity of
NoC systems, characterized by its multiple nodes and high
concurrency, the verification of NoC is not only critical but also
labor-intensive. The verification of NoC involves two primary
techniques: 1) formal verification and 2) dynamic simulation.

Formal methods generally construct abstract models of
NoCs in order to verify certain properties [5], [6], [7], [8],
[9]. However, these methods often face significant challenges
when it comes to verifying the RTL implementations of
NoC due to the complexity of extracting NoC properties
at this level. Additionally, scalability issues frequently arise.
When routers are interconnected to form a network, the
problem-solving complexity for some global NoC properties
significantly escalates.

As a result, simulation-based methods have become a
preferred choice for NoC verification [10], [11], [12]. In
dynamic methods, numerous test cases are manually written,
aiming to achieve full coverage in the test plan. This process
heavily relies on skilled verification personnel to analyze
coverage statistics and make real-time adjustments to test
constraints. Within dynamic verification, the universal veri-
fication methodology (UVM) is a mainstream solution [13],
[14], [15], [16], [17]. UVM provides a robust framework
that promotes the development of reusable, interoperable, and
scalable verification environments. This greatly simplifies the
test case generation and coverage analysis process. However,
despite these advancements, the generation of comprehensive
test cases for NoC systems still necessitates substantial human
intervention.

A variety of strategies have been proposed to automate the
generation of test inputs. In recent years, hardware fuzzing
has emerged as a popular and scalable solution [18], [19],
[20], [21], [22], [23], [24], [25], [26]. Within this approach,
coverage is typically used as guidance. New inputs are gener-
ated by mutating previously interesting inputs (i.e., the inputs
that increase coverage), thereby effectively exploring hardware
behaviors. Some software fuzzers, such as libFuzzer [27] and
American Fuzzy Lop (AFL) [28], can function as heuristic
mutation engines in hardware fuzzing.

However, applying these previous hardware fuzzing efforts
to industrial NoC UVM verification has proven challenging. To
accelerate the collection of coverage data within fuzzing loop,
these efforts employ innovative coverage metrics as guidance,
such as multiplexer coverage in RFUZZ [18] and software
model coverage of DUT in HW-Fuzz [19]. However, these
coverage metrics diverge significantly from those employed in
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Fig. 1. NoC-based MPSoC.

industrial verification, including code coverage and functional
coverage, thus leading to a significant departure from stan-
dard IC design and verification processes. Furthermore, these
fuzzing methods rely on open-source hardware workflow. They
make use of Verilator [29] as simulator, which offers limited
support for SystemVerilog and UVM and differs greatly
from industrial verification environments. Some research has
attempted to create FIRRTL passes to facilitate fuzzing, which
is also infeasible to most industrial DUTs written in Verilog.

In this article, we demonstrate the application of fuzzing
in an industrial NoC verification process. We summarize four
key contributions as follows.

1) We build an innovative UVM fuzzing framework that
integrate software fuzzer AFL with conventional UVM
verification environment.

2) We create an effective multiport fuzzing grammar to
generate input transactions for NoC, which is also
adaptable to other DUTs with multiple ports.

3) We assess the practicality of employing fuzzing in an
industrial NoC verification workflow. Utilizing fuzzing
metrics, we achieve coverage closure at both router and
network verification levels. Additionally, we propose a
novel fuzzing metric to detect overtime-related vulnera-
bilities in NoC systems.

To evaluate our fuzzing methodology, we conducted a
case study using the NoC design within OpenPiton [30].
By employing fuzzing, we were able to achieve 100% code
and functional coverage for both router and mesh network
automatically. Our method has also successfully enabled the
automatic detection of injected starvation bugs. Impressively,
our approach outperformed industry-standard random approach
and constrained random verification (CRV) [31], demonstrating
the adaptability of fuzzing in practical NoC verification
processes and its potential to reduce the need for human
involvement.

In the instance of NoC fuzzing, our study also reveals novel
insights for verifiers considering the application of fuzzing in
industrial hardware verification processes. These knowledge
includes the principles of hardware fuzzing grammar design,
the implementation of functional coverage fuzzing, and the
strategy for fuzzing seed selection. This study builds upon our
preliminary research [32].

II. BACKGROUND

A. Network-on-Chip Description

Fig. 1 shows an example of a 9-tile multiprocessor
system-on-chips (MPSoCs) interconnected through a 9-router

mesh-based NoC. As illustrated in the example, NoC is
responsible for the exchange of data among the tiles. Packet
is the basic data unit in NoC, which is subdivided into smaller
units known as flits. A flit is not only the smallest manageable
data unit in NoC but also the basic unit for bandwidth
and buffer capacity allocation. A packet usually consists of
one or more flits, which includes a header flit (containing
destination address and other control information), payload
flits (containing the actual data), and a tail flit (signifying the
end of the packet).

The NoC comprises of a series of routers, each designed to
route data from an input port to an output port. Neighboring
routers are connected through bidirectional links. In a typical
2-D mesh topology, each router has five ports: 1) North;
2) East; 3) South; 4) West; and 5) Local. The port number of
a router can differ based on the NoC topology. The router’s
structure consists of four primary components.

1) Input/Output Buffers: These buffers serve to store the
data that request the router by one of its input ports.

2) Route Computation: This component is responsible for
selecting the output port to redirect incoming data. It
determines the path that packets will traverse through
the network.

3) Crossbar Switch: This central switching mechanism links
input ports to output ports, enabling multiple concurrent
connections between various input and output ports.

4) Arbitration Logic: Arbiter decides which input buffer
is permitted to utilize the crossbar switch at a given
moment. In situations when multiple requests from dif-
ferent input ports target the same output port, the arbiter
grants communication privileges to a single request.

In NoC Systems, certain properties, such as starvation-free
and deadlock-free, hold paramount importance. The starvation-
free property ensures that no input request gets stuck forever
because of competition of other requests from different ports.
The deadlock-free property, on the other hand, safeguards
against the potential for packet stagnation caused by a cyclical
wait for the release of resources.

NoC verification is an extremely labor-intensive process due
to the inherent complexity of NoC systems. Ensuring that
test cases cover all possible scenarios presents a significant
challenge. NoC designs typically comprise a multitude of
input ports and switching nodes. Every node and input port
requires meticulous verification to ensure functional correct-
ness. Moreover, the concurrent nature of NoC designs poses an
additional verification challenge. Constructing test cases that
can effectively evaluate concurrent scenarios is a demanding
task, as it requires consideration of all possible concurrent
events and their interactions.

B. Hardware Fuzzing

Fig. 2 shows the basic flow of hardware fuzzing. The
fuzzing procedure starts with a random selection from the seed
pool. This seed undergoes mutation to generate a new input,
which is then compiled into a DUT-compatible stimulus by a
preprocessor. An RTL simulator then simulates the DUT and
collect coverage data. Inputs revealing new hardware states
(i.e., new coverage) are retained as seeds for future fuzzing
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Fig. 2. Basic hardware fuzzing flow.

iterations. The process repeats until no new states emerge for
a set number of iterations. Throughout, assertions or golden
model cross-checks ensure DUT’s correct behavior.

Since the collection of coverage is time-consuming, hard-
ware fuzzing processes often take hours or even days to
complete. To address the challenge of long runtime, novel
coverage metrics have been designed as a speed-up strategy.
For instance, RFUZZ [18] and DifuzzRTL [21] employ netlist-
level coverage metrics, which enable FPGA acceleration
during hardware fuzzing. HW-Fuzz [19] translates an HDL
design into a software equivalent model using Verilator [29]
and applies software fuzzing method directly.

However, these novel methods cannot be accepted in the
industry. First, there exists a major gap between novel and
traditional coverage metrics. Mapping these novel types
of coverage to traditional coverage, such as line cover-
age and branch coverage, presents a significant challenge.
Second, existing fuzzing methods considerably deviate from
mainstream standard IC verification process. They rely on
open-source simulators, which are not fully compatible with
commonly used verification environments like SystemVerilog
and UVM. In this study, we focus on the application of fuzzing
in the traditional industry-standard NoC verification workflow.

C. AFL Fuzzer

In hardware fuzzing, an important part is using coverage
to guide the input generation of subsequent fuzzing iterations.
This process necessitates a fuzzer to select interesting seeds
and perform mutations to heuristically explore design spaces.
Many hardware fuzzing studies [18], [19], [20], including
ours, use the AFL [28] as their mutation engine.

AFL is a well-established software fuzzer. When adapting
AFL for hardware fuzzing, we bypass its built-in coverage
instrument for software program, and use the coverage data
collected from hardware simulator to guide AFL’s heuristic
algorithm. AFL generates binary test files as input, which
necessitates a translation strategy from binary into valid
hardware stimuli, specifically NoC packets in our work.

AFL’s mutation strategy is grammar-agnostic and targets
the binary files. Inputs are chosen from seed pools and are
mutated using deterministic and nondeterministic methods.
The deterministic stage mutate every position in the input,
which includes operations, such as bitflip, arithmetic add/sub,
trim, splice, etc. The nondeterministic stage are performed in
the havoc stage of AFL. In each application of the havoc
mutation, between 2 and 128 random mutations are performed
on the parent input. Given AFL’s maturity as a software
fuzzer and its highly efficient heuristic strategies, it serves
as an excellent mutation engine for hardware fuzzing, saving
significant time compared to developing one from scratch.

D. UVM Basis

The UVM is a verification framework built primarily on
the SystemVerilog class library. UVM constructs a verification
platform framework composed of several key concepts: trans-
action, driver, monitor, agent, sequence, sequencer, reference
model, and scoreboard. These components work together to
accomplish hardware verification tasks.

Transaction: It is an abstract data unit in UVM testbench,
modeling real-world events like data packets. It is also the
basic unit for input generation in our NoCFuzzer framework.

Driver: The driver is responsible for converting abstract
transactions into electrical signals. In our NoC testbench, it
translates NoC packets into stimulus according to the NoC
packet protocol.

Monitor: The main task of monitor is to observe the inputs
and outputs of the DUT, transforming the DUT’s electrical
signal data into a transaction format.

Sequence: A sequence typically includes a series of trans-
actions. In the process of fuzzing, NoCFuzzer generates a
sequence for each NoC port during each iteration.

Sequencer: The main role of sequencer is to extract trans-
actions from the Sequence and send them to the DUT at the
appropriate times.

Agent: The task of agent is to centrally manage everything
related to the DUT interface. An Agent typically includes
driver, monitor, and sequencer.

Reference Model: It models the behavior of the DUT and
offers a reference of the DUT’s expected behavior.

Scoreboard: Scoreboard is used to compare the output data
between the DUT simulation and the reference model to verify
the correctness of DUT.

UVM allows verification engineers to construct func-
tional verification environments with standardized hierarchical
structures and interfaces using reusable components. In the
following sections, we will introduce the process of construct-
ing a UVM testbench for NoC and the integration of our
NoCFuzzer into this environment.

III. TRADITIONAL NOC VERIFICATION

In this section, we use the NoC in OpenPiton [30] as the
running example to explain the traditional NoC verification
and highlight its shortcomings. Section III-A provides a
comprehensive overview of the OpenPiton NoC, including
a detailed explanation of the functional covergroup settings.
Following this, Section III-B introduces the UVM environ-
ment constructed specifically for the OpenPiton NoC. Finally,
Section III-C outlines the entire lifecycle of the traditional
NoC verification process.

A. OpenPiton NoC

1) NoC Design: OpenPiton is the world’s first open-source,
general-purpose, multithreaded manycore processor [30].
The design is implemented in industry standard Verilog
HDL. OpenPiton builds upon the industry OpenSPARC T1
cores [33] and is designed for scalability both intrachip
and interchip. Intrachip, tiles are connected via NoCs in
a 2-D mesh topology. Interchip, a chip bridge serves as
an interface to off-chip logic. The NoC primarily facilitates
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TABLE I
COVERAGE CLOSURE TARGET IN FUZZING

Fig. 3. NoC router UVM environment and network UVM environment.

a distributed, directory-based cache coherence protocol in
OpenPiton.

In our research, we are not concerned with the high-
level protocol operating on the NoC, as its content remains
agnostic to the NoC itself. Instead, we view the NoC as a
sophisticated component that provides service to high-level
CPU applications, and our primary objective is to verify the
functional correctness of the NoC. It should be noted that
our focus is strictly limited to the aspect of intrachip NoC
communication. Discussions pertaining to interchip commu-
nication involving the chip bridge and chipset is beyond our
study.

OpenPiton NoC is dynamic, providing a packetized, fire-
and-forgot interface. Each NoC consists of two 64-bit
uni-directional links, one for each direction. The NoC relies
on a credit-based flow control [34]. Packets are routed by XY
dimension-ordered wormhole routing [34] to avoid deadlocks.
Each hop takes one cycle when packets are going straight
and one extra cycle for route calculation when a packet

must make a turn at a switch. Within each router, there is
a fully connected crossbar, which allows all-to-all five-way
communication. Each NoC packet contains a header word
denoting the x and y destination location for the packet along
with the packet’s length.

While there exist some other open-source NoC
projects [35], [36], [37], none of them offer industry-level and
comprehensive Verilog NoC designs like OpenPiton. Given
that our work aims to demonstrate the feasibility of using
fuzzing to automate industry-standard NoC verification, to
maintain a strong correlation with practical applications, we
select the NoC in OpenPiton as our primary test target in the
following experiments.

2) NoC Functional Coverage: In the NoC testplan, verifi-
cation of the router and network necessitates the closure of
code coverage, such as line coverage and branch coverage.
Additionally, functional coverage, which is determined by
the verifier, is also crucial. Achieving functional covergroups
closure proves to be the most challenging. Table I provides an
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overview of the coverage groups which we utilize as fuzzing
targets in the test plan.

Approximately 80% of code coverage can be effortlessly
achieved through random testing. Similarly, many cover-
groups, especially those of smaller size or with simpler
conditions, can be easily covered through the same method.
We focus primarily on covergroups that cannot be fully
completed by random testing. Additionally, we also select
two covergroups, specifically router covergroup3 and
mesh covergroup3, which can be easily covered by
random testing, to draw comparisons in the subsequent
experiments.

For the router, we select three covergroups of varying sizes
as examples. router covergroup1 tests the arbiter’s
behavior, while covergroup2 and covergroup3 both
concentrate on the router’s behavior and the correct crossbar
switching.

For network, we have chosen a 3 × 3 Mesh Network as
our DUT for the upcoming experiment. We are primarily
concerned with the global behavior of the NoC, including
the states of the sending destination and buffer usage. To
prevent the covergroup size from becoming excessively large,
we have selected the top-left four routers in 3 × 3 Mesh
Network for observation within mesh covergroup1 and
covergroup3. Given the symmetry of a Mesh Network, the
states of these four routers can adequately represent the Mesh
to a certain extent. We also observe the buffer usage of the
center router with mesh covergroup2.

B. NoC UVM Testbench

In this section, we build the UVM environment for the
NoC in OpenPiton. Given the complexity of NoC architec-
tures, characterized by multiple ports, high concurrency, and
diverse combination patterns, creating test cases directly in
SystemVerilog proves challenging. UVM provides an effective
solution with its strong abstraction and reusability capabilities.

We have implemented a two-step verification process using
UVM, first focusing on the router, then expanding to the
network system. This design strategy primarily draws inspira-
tion from the study outlined in [10]. Fig. 3 shows an overview
of our NoC UVM testbench.

In NoC UVM testbench, a transaction is referred to as an
NoC packet, which is composed of several flits. The packet’s
properties in OpenPiton NoC include content, length, and des-
tination address. Both router and network UVM environments
utilize the same type of agent, encompassing a driver and
monitor. These are responsible for converting NoC packets
into actual hardware stimuli that comply with the OpenPiton
NoC protocol. In both router and network verification, every
input port is allocated a dedicated agent.

Because OpenPiton’s NoC uses a mesh topology, the router
UVM environment deploys five agents, each corresponding to
the north, east, south, west, and local input ports. For network
verification, the number of agents is contingent on the mesh
size. Each local port of the router is assigned an agent.

To check the correctness of NoC, we use a scoreboard to
collect transactions sent from input monitors, then observe

whether each packet is dispatched to the corresponding output
port. Each collected transaction is passed to a predictor to
determine which output port should the packet be assigned to.
In router testing, the predicted output port should align with
the routing strategy. In network testing, the predicted output
port should match the local port of the destination router. The
scoreboard also collect transactions from output monitors. If
all packets are matched correctly, this means that all packets
were correctly sent and received through the DUT.

In addition to the basic UVM components discussed in
Section II-D, Virtual Sequence is employed for NoC. It
provides hierarchical levels of sequences. Virtual sequence do
not send any transactions or sequence items to the DUT. They
only initiate subsequences and assign these sequences to the
corresponding agent of each NoC input port. Subsequences
then transmit transactions to the driver and finally to the DUT.
In our NoCFuzzer framework, a virtual sequence is generated
for UVM testbench in each fuzzing iteration.

C. NoC Verification Lifecycle

Following conventional hardware verification principles, the
verification of OpenPiton’s NoC can be approached in three
stages: 1) router verification; 2) network verification; and
3) stress testing [10], [38], [39].

Router verification, the first phase, validates the func-
tionality of an individual router. This phase scrutinizes key
router operations, including the arbitration strategy, routing
computation, and crossbar functions.

Network verification, the second phase, integrates individual
routers into the larger network structure. This phase assesses
the global behavior of the network, including the effective
communication between routers, network latency, and the
accurate delivery of packets.

Stress testing, the final stage, is designed to uncover any
latent bugs that may not be detected in the preceding stages.
By subjecting the NoC system to extreme conditions and high
traffic loads, this phase tests the resilience and stability of the
system, potentially revealing hidden vulnerabilities, such as
packet drops, starvation, deadlock, and livelock.

In the beginning of verification, the design undergoes ran-
dom testing in UVM. Code coverage and functional coverage
serve as indicators of the test sufficiency in this process, which
has illustrated in Section III-A. However, using OpenPiton’s
NoC router as an example, random testing only achieves
approximately 95% code coverage. The remaining 5% of
coverage, equating to about 40 points, can only be addressed
by manually written specific test cases one by one. Verifiers
should thoroughly analyze the router’s logic, and then write
constraints or packet transaction sequences to cover these
points. Achieving coverage closure with manual test cases
is the most labor-intensive part in NoC verification. In this
article, we propose to automate this task with hardware
fuzzing.

IV. FUZZING FOR NOC VERIFICATION

We advocate that hardware fuzzing development should put
emphasis on its industrial practicality and its demonstrable
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Fig. 4. Overview on UVM fuzzing framework for NoC verification.

ability to reduce human resource expenditure in the verification
process. To successfully integrate fuzzing within our NoC
industrial verification workflow, we put forth three fundamen-
tal prerequisites for our fuzzing methods.

1) Aimed at standard HDL (e.g., Verilog).
2) Primarily target at traditional coverage metrics.
3) Be compatible with UVM.
In this section, we outline the fuzzing framework and

introduce its application into NoC verification. We still use
OpenPiton NoC as a consistent running example to explain
some key technical concepts. We first discuss the integration
of fuzzing with the traditional NoC UVM testbench. Then,
based on the NoC testplan, we analyze the potential areas
in traditional NoC verification where fuzzing can enhance
automation. In the final section, we explicate our approach to
translate AFL generated input file into NoC stimuli.

A. UVM Fuzzing Framework

Fig. 4 provides an overview of our fuzzing framework,
which consists of two parts: 1) the AFL fuzzer and 2) the
simulation environment. These two components operate con-
currently and interact with each other.

AFL generates binary-format input test files, and all its
mutation operations are binary-based. It generates new inputs
from the seed queue according to the coverage information.
To facilitate communication with the simulation environment,
we use AFL proxy, as proposed in JQF [40]. When AFL
produces a new test file, the proxy sends a control signal to the
simulation environment via a Linux pipe and writes the new
test files to local Linux files. After each simulation loop, the
simulation environment sends the coverage information back
to AFL through the Linux pipe, allowing AFL to analyze the
coverage and generate new inputs.

We utilize Synopsys VCS [41] to simulate the UVM
testbench. A UVM test component is launched from the top
testbench and connects to AFL through the AFL proxy. A
controller orchestrates the basic logic of the fuzzing loop.
Upon receiving a new input from AFL, the controller initiates
the fuzzing decoder, which reads the input test file and converts
the binary string into a valid virtual sequence. The decoding
is enabled by user-defined hardware fuzzing grammar, which
will be detailed in Section IV-C. Virtual sequence comprises

multiple sequences, each of which is a series of UVM
transactions. The virtual sequence also specifies the allocation
of each sequence to different agents. Subsequently, the virtual
sequencer allocates the sequences, resets the DUT, and the
agents drive the transactions to the DUT. After each simulation
iteration, we extract the coverage data from the coverage
database using the unified coverage API (UCAPI) provided by
VCS and send this information back to AFL.

While our fuzzing framework automates test generation, it
does not eliminate the need for the creation of a basic UVM
testbench. Verifiers must also develop a detailed test plan that
accurately reflects the verification intent. Following this, ver-
ifiers should establish the hardware fuzzing grammar, taking
into account DUT characteristics and interface protocols. The
remaining fuzzing environments can then be reused for various
DUTs and test plans.

B. Where Can Fuzzing Be Used in NoC Verification?

The verification process for NoC can be divided into
three parts: 1) router verification; 2) network verification; and
3) stress testing. The fuzzing verification workflow discussed
in this section are intuitively depicted in Fig. 5. For router and
network verification, Coverage Directed Fuzzing helps achieve
code and functional coverage closure. For stress testing, we
introduce Overtime Directed Fuzzing to rapidly detect time-
related vulnerabilities of NoC.

1) Router Verification: Achieving full code and functional
coverage of router is needed in this stage. Unfortunately,
random testing usually fails to reach numerous complex
branches and functional points and writing test cases manually
is both time-consuming and labor-intensive.

Code coverage, which measures the extent RTL code
has been scrutinized, offers fine-grained, strongly correlated
feedback and is ideal for directing fuzzing. There exists a
strong logical correlation between various code elements. For
instance, in branch coverage, mutating an input covered a
particular branch is more likely to lead to an input that hits its
subbranch. Therefore, mutation-based fuzzing appears to be a
potent strategy for achieving closure of code coverage.

Functional coverage, as defined by verification experts,
reflect the high-level functional intentions of the design.
Achieving full coverage in functional coverage is particularly
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Fig. 5. Comparing manual testing and fuzzing in NoC verification.

challenging for some covergroups. For example, the cover-
groups of OpenPiton NoC, as outlined in Section III-A, reflect
the NoC’s diverse concurrent behaviors. The scale of these
covergroups is substantial, making them hard to be fully
covered by random testing. There exists a strong interrelation
among these functional points, which makes mutation-based
fuzzing potentially beneficial. However, previous fuzzing
research has not focused on utilizing fuzzing to automate the
functional coverage closure. In our research, we initiate a
pioneering effort.

2) Network Verification: Once achieving a thorough ver-
ification of individual routers, they are interconnected for
network-level testing. Given that full code coverage for each
router has been achieved in the preliminary phase, it is not
included in the test plan for the network, which is constructed
from these routers. At the network level, the verifier establishes
numerous functional coverpoints. These can be utilized as
feedback in hardware fuzzing, aiming to achieve coverage
closure automatically.

3) Stress Testing: This stage involves long-duration, high-
pressure testing aimed at uncovering hidden vulnerabilities in
NoC. Bugs in NoC typically arise from mishandled resource
contention and often manifest as packet transmission delays.
Generally, a timeout threshold is set. If a packet is not
received within this threshold, a bug is triggered. However,
triggering these bugs is not only reliant on input stress but
also profoundly influenced by the order of input sequences.
Using random testing is hard to find out such vulnerabilities.
We hypothesize that by employing the packet waiting time,
which could be induced by contention, as a guiding feedback
for fuzzing, the mutation could progressively generate specific
input sequences that lead to timeouts, thereby rapidly find the
bug. This hypothesis leads us to introduce OverTime Directed
Fuzzing, a method for detecting time-related vulnerabilities.
This will be further discussed in Section VI-C.

C. Multiport Fuzzing Grammar Design

In each fuzzing iteration, to translate AFL-generated binary-
format test files into valid input transaction sequences to
DUT, a mapping strategy is necessary. In NoC verification,
we construct the NoC fuzzing grammar. Our NoC fuzzing
grammar first segments the AFL-generated input test file
into NoC packet instructions. Subsequently, it allocates these

Fig. 6. NoC packet instruction.

instructions to the UVM sequences of different NoC ports.
Each instruction is then translated into NoC UVM transaction
and passed to the UVM driver, which generates the final
stimuli for the NoC.

To accommodate the mutation operations of AFL, we format
our grammar in a compact binary representation and use byte
as a basic unit. As depicted in Fig. 6, NoC Packet Instructions
are abstracted from a standard format of an NoC packet, that
contains: 1) 16-bit destination address field; 2) 8-bit packet
length field; 3) 8-bit free flag field; and 4) 8-bit port field. The
destination address encapsulates x and y addresses, each being
8 bits. In random testing, the port state, either free or active,
is controlled by a predefined free probability. We replace that
probabilistic method with a free flag embedded in the NoC
packet instruction. This allows fuzzing to generate the flag,
thereby controlling the port’s state directly. If the free flag is
false, the testbench translate the NoC packet instruction to an
NoC packet, which is then allocated to a departure port. If
the free flag is true, the instruction is still allocated to a port,
but it keeps the port idle for a period that corresponds to the
length of packet.

The aforementioned fields are restricted to the generation
of NoC packet transactions. However, both the router and
network have multiple input ports, which prompts the question
of how to distribute them effectively across these ports. To
accommodate the multiport feature of NoC, we also introduce
a port field in the NoC instruction for packet distribution. We
propose two potential strategies for determining the value of
this port field.

1) Dynamic Pattern: We refer to a field as dynamic when
its value is generated from an AFL test file. If the port field
is dynamic, the departure port of the corresponding packet
is determined by the fuzzing-generated test files. The value
of this field is mapped to one of all possible input port IDs,
and the packet is then allocated to the input sequence of the
corresponding port. For a router in Mesh topology, there are
five input ports. For a network, the number of input ports is
equal to the number of routers.

2) Stable Pattern: We refer to a field as stable when its
value is defined by a rule, not generated from input test
files. In the stable pattern, the value of port field does
not depend on fuzzing. We aim to assign a fixed order to
the instruction sequence for their departure. Instructions are
cyclically allocated to the input queues of different ports. For
instance, in a five-port router in Mesh topology, each generated
instruction is dispatched sequentially to the North, East,
South, West, and Local input ports. For a 3 × 3 mesh
network, each generated instruction is systematically sent to
the Local input ports of routers R0 to R8.

We map the AFL binary test files to each dynamic field of
the instruction byte by byte, aligning them with their respective
valid definition domains. Given an NoC size of M × N, a
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maximum packet length of Lmax, and a desired port free
possibility of p. The number of input ports in this verification
environment is denoted as S. Consequently, the final behavior
of an NoC instruction is determined by these parameters

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xpkt = Xbyte mod M

Ypkt = Ybyte mod N

Lpkt = Lbyte mod Lmax

idle = Fbyte < byte_max ∗ p

Psrc =
{

Pbyte mod S, if dynamic

inst_id mod S, if stable.

(1)

With AFL binary test files evolve through successive fuzzing
iterations, a variety of NoC instruction sequences are gener-
ated. These instructions can be translated into diverse NoC
traffic patterns, each characterized by unique packet contents
and lengths. The fuzzing process strategically guides the test
generation using coverage feedback and thereby accelerates
the closure of NoC testplan.

Our fuzzing framework is adaptable to any NoC topol-
ogy. The heuristic algorithm of fuzzing is topology-agnostic,
focusing only on the number of NoC ports. The NoC fuzzing
grammar segments the AFL input test file into NoC instruc-
tions, which are then assigned to different ports in either
a dynamic or stable manner. AFL observes the relationship
between the coverage result and the input file, heuristically
enhancing the generation of high-quality inputs for a specific
topology.

In summary, to facilitate the translation of AFL-generated
test files into NoC stimulus, we have designed the NoC
packet instruction and developed two NoC fuzzing grammars:
1) dynamic and 2) stable. A detailed comparison between these
two grammars will be presented in Section V-A.

V. CASE STUDY: FUZZING NOC IN OPENPITON

In our case study, we use the router in OpenPiton NoC to
address some key questions related to fuzzing. Section V-A
contrasts the dynamic and stable port mapping strategies.
In Section V-B, we further explore the treatment of func-
tional coverpoints during fuzzing. Finally, in Section V-C,
we research the influence of initial seed length to hardware
fuzzing.

A. Fuzzing Grammar Comparison

Section IV-C introduces two multiport fuzzing grammars
for NoC. The dynamic pattern utilizes fuzzing to determine
the source input port of an NoC instruction, while the stable
pattern sequentially assigns instructions to each input port
within the NoC verification environment. In this section, we
employ the functional covergroups of a router as a case study
to draw a comparison between the stable pattern and dynamic
pattern.

In these experiments, we focus on the center router in a
3×3 Mesh Network. We set the NoC maximum packet length
of 20 flits and the expected idle probability to 20% for both
random testing and fuzzing. We perform each trial ten times

TABLE II
PERFORMANCE COMPARISON BETWEEN DYNAMIC AND STABLE FUZZING

GRAMMAR ON ROUTER COVERGROUPS

Fig. 7. Comparison of two fuzzing grammars. Dynamic pattern’s high
dynamism results in huge behavior changes of DUT.

and calculate the average. We use ten initial seeds, which is
generated randomly and is 100 bytes long. For the router with
five input ports, this corresponds to an average of 5 input
instructions for stable pattern fuzzing and 4 input instructions
for dynamic pattern fuzzing per port within a fuzzing loop.
We allot 10 000 000 packets for each router port, generated
either randomly or by fuzzing, and then compare the resulting
functional coverage. The results are presented in Table II.

We observe that fuzzing with dynamic fuzzing covers
significantly fewer points than fuzzing with stable pattern, and
even underperforms random testing. We attribute this result to
the dynamism nature of dynamic pattern. A minor modification
in the port field of dynamic pattern’s instruction triggers a
substantial transformation in associated port packet sequences,
leading to a complete shift in the router’s behavior.

Fig. 7 provides a representative example. Before mutation,
in the dynamic pattern, the north input port receives instruc-
tions 1, 2, and 5 and the south input port receives instructions
3 and 4. In the stable pattern, the port field is disregarded and
instructions are distributed cyclically. After mutation, the port
field of the first instruction changes from North to South. In
the dynamic pattern, instruction 1 is then sent to the south.
The instructions following instruction 1 in the north port all
shift forward one place, and the instructions in the south port
all move back one space, resulting in a reordering of all input
packets to the north and south ports. However, the evolutionary
algorithm assumes that mutations derived from previous inputs
will explore the uncovered regions of DUT incrementally.
Otherwise, it could degenerate into randomness, or even worse.
Contrary to dynamic pattern, a mutation operation in stable
pattern affects only a single input packet, leading to relatively
minimal changes to DUT, which makes fuzzing work. Based
on this comparison, we will employ the stable pattern in the
following experiments.
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Fig. 8. Comparison of different fuzzing targets for functional coverage
fuzzing. (a) Router covergroup1. (b) Router covergroup2.

Key Insight: Fuzzing Grammar’s dynamism needs
restriction. Instruction mutations must not trigger dras-
tic, untrackable changes in DUT’s behavior.

B. Functional Coverage Fuzzing

Our research represents a pioneering effort in using hard-
ware fuzzing techniques to automate functional coverage
closure. When we select large-scale covergroups as our target,
a question arises: How should we use covergroups as feedback
in fuzzing. Should we dedicate a specific fuzzing task to each
covergroup, or can we merge different covergroups together
and attempt to cover them within a single fuzzing task.

An intuitive notion is that a covergroup represents a space
where each coverpoint is strongly related to the others, while
the coverpoints in different covergroups may vary significantly.
However, combining multiple covergroups could enhance the
diversity of feedback to fuzzing. We cannot rule out the possi-
bility that different covergroups might stimulate the generation
of more efficient test cases when interacting with each other.

So we use router covergroup1 and covergroup2
as a case study. We first fuzz covergroup1 and
covergroup2 separately in two fuzzing tasks, where each
task uses only the corresponding covergroup information as
feedback. Then we combine them in a single fuzzing task
and use both covergroups as feedback. The experimental
setup remains consistent with previous settings outlined in
Section V-A. For each methods, if one thirds of the fuzzing
trials achieve coverage closure, an end flag is plotted.

Fig. 8 presents the results. The results indicate that merging
covergroups within a fuzzing task significantly diminishes
the task’s pertinence, thereby slowing down the coverage
closure time. This effect is particularly pronounced when a
smaller covergroup is fuzzed alongside a larger one. Based on
this comparison, we will fuzz each covergroup separately in
subsequent experiments.

Key Insight: In a fuzzing task, targets must be closely
related. Otherwise, fuzzing becomes irrelevant and less
efficient.

C. Seed Length Selection

Previous Hardware fuzzing studies have often neglected
the impact of initial seed length on the fuzzing process.

Fig. 9. Comparison of different seed length for fuzzing. (a) Router
covergroup1. (b) Router covergroup2.

The initial seed length not only determines the length of
subsequent inputs in fuzzing iterations but also influences
the simulation time, fuzzing iteration frequency, and the
time required for fuzzing operations, including mutation and
coverage collection.

Initial seed with shorter length can decrease the simulation
time, thereby increasing the frequency of fuzzing iterations.
This results in more time spent on fuzzing operations, and
reduces the total length of tested input within a specific
period. Despite this, the simplicity of mutation with shorter
seeds may enhance evolutionary outcomes. In contrast, longer
seed provide more tested input. However, this also broadens
the scope and complexity of mutation targets, which could
pose a challenge for the software fuzzer to achieve effective
evolution. In this section, we conduct an experiment to
investigate the influence of seed length on our NoC fuzzing
framework.

The coverage of some router branches is related to its cur-
rent state. For example, for the round-robin arbitration of the
router, the grant to the next packet depends on the current grant
states of the output port. And for some functional covergroup,
it is related with the current buffer usage. Therefore, it is
infeasible to assign just one instruction for an input port in
a fuzzing loop to achieve coverage closure. Consequently,
we select the minimal seed length of 40 bytes, equivalent
to two instructions for an input port in a fuzzing loop. For
comparison, we also set seed lengths of 100, 200, and 1000
bytes. The experimental setup remains consistent with that in
Section V-A.

Fig. 9 illustrates the results. For both router
covergroup1 and covergroup2, a seed length of
40 bytes yields the best performance. As the seed length
increases, the time required to achieve coverage closure
slows down. For the longest seeds of 1000 bytes, both
covergroup1 and covergroup2 fail to reach closure
even after 24 h. The experimental data suggests a strong
correlation between seed length and the efficacy of fuzzing. It
is clear that the selection of initial seeds cannot be arbitrary.
Our study indicates that a smaller seed length enhances NoC
fuzzing performance. Based on this comparison, we will
choose small seed length in subsequent experiments.

Key Insight: Keep fuzzing seeds small to facilitate
easier evolution. However, ensure they are sufficiently
long to represent the behavior space of DUT.
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Fig. 10. Comparison between fuzzing, CRV, and random testing on router coverage closure (a)–(e) and network coverage closure (f)–(h). (a) Router line
coverage. (b) Router branch coverage. (c) Router covergroup1. (d) Router covergroup2. (e) Router covergroup3. (f) Mesh covergroup1. (g) Mesh covergroup2.
(h) Mesh covergroup3.

VI. EVALUATION

In the evaluation part, we explore the practical efficiency of
hardware fuzzing in the verification flow of NoC. We address
the question: Can fuzzing be utilized to reduce human or
computational costs in a UVM environment?

Despite our best efforts to use previous fuzzing research
as a baseline, we found no suitable candidate that could
be incorporated into our current VCS and UVM fuzzing
framework. Most of hardware fuzzing researches either use
Verilator [19] or are based on FIRRTL tool chains [18],
[20], [21], [22]. For example, RFuzz [18] uses mux coverage
as fuzzing guidance and targets Chisel designs. However,
VCS does not support such netlist-level coverage collection.
Moreover, integrating our Verilog NoC design into their
fuzzing framework is currently impractical due to the difficulty
in translating Verilog to FIRRTL.

Our primary objective is to evaluate whether fuzzing can
automate an industrial NoC verification workflow, rather
than comparing with novel but impractical fuzzing methods.
Accordingly, we benchmark against commonly used industrial
verification techniques, specifically, random testing and CRV
methods. If random testing fails to achieve coverage closure,
but fuzzing succeeds, then the human effort involved in writing
test cases or specific constraints to reach coverage closure is
effectively saved.

We set the experiment based on the key insights of
Section V. First, we employ the stable pattern among the two
NoC instruction distribution strategies. Second, we initiate a
separate fuzzing task for each code coverage and functional
covergroup. Third, we use the shortest possible initial seed
length for router fuzzing and network fuzzing.

A. Router Fuzzing

In this section, we use a single router as DUT and employ
the router UVM testbench mentioned in Section III-B. We
make a comparison among fuzzing, random testing, and CRV.
Our goal is to achieve coverage closure automatically through
fuzzing and thereby reduce human effort. In fuzzing, We use

line coverage, branch coverage, and router covergroups as
feedback, which are detailed in Table I. In random testing, the
input packets for each port are completely random, both in
terms of seed length and destination. In CRV, we take into
account the dimension-order routing strategy of the router,
and establish a general constraint for each packet’s destination
field. This helps balance the load and maximizing the coverage
within the router’s logic regions.

We focus on the center router in a 3 × 3 Mesh Network.
The initial seed files used for router fuzzing are 40 bytes in
length, corresponding to two instructions for each of the five
input ports on the router. For tests that do not achieve coverage
closure, we set the maximum testing time to 120 h. Given the
lengthy duration of the fuzzing process and the incrementally
slower progress in coverage, we use the logarithm of the
packet number as the x-axis to clearly illustrate the quality
of input generated by different methods. This is depicted in
Fig. 10, where an end flag is marked once over a third of trials
reach full coverage. Additionally, Table III compares the time
efficiency of different methods.

Fig. 10(a)–(e) and Table III show the router fuzzing results.
For both line and branch coverage, fuzzing reaches full
coverage within 3 h, surpassing the performance of random
and CRV methods, which struggle to improve coverage beyond
95%. For router covergroup1 and covergroup2,
fuzzing can also outperform random and CRV methods
in terms of both coverage and time efficiency. However,
for the easy covergroup3, CRV demonstrates superior
performance, achieving coverage closure in the shortest time.

B. Network Fuzzing

In this section, we use a 3 × 3 Mesh Network as
DUT and employ the network UVM testbench mentioned
in Section III-B. In network verification, our objective is to
achieve functional coverage closure. Given the complexity of
the NoC network, it is challenging to identify a general and
effective constraint in CRV similar to the constraint outlined
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TABLE III
TEST GENERATION METHODS EFFECTIVENESS COMPARISON

in Section VI-A for router verification. We only use fuzzing
and random testing for packet generation.

For a 3 × 3 Mesh Network with nine input ports, we
set the initial seed length to 72 bytes, which corresponds
to two instructions for each local input port. Fig. 10(f)–(h)
and Table III show the experiment results. For both mesh
covergroup1 and covergroup2, fuzzing achieves cover-
age closure while random testing fails to complete. However,
for the less complex covergroup3, although fuzzing is
capable of reaching closure, it is slower than random testing.

C. Fuzzing for Vulnerability Detection

Using random testing to identify vulnerabilities is challeng-
ing during stress testing in NoC verification. Therefore, we
adopt overtime directed fuzzing, which utilizes packet waiting
time as fuzzing feedback, to generate effective NoC packet
sequences and uncover potential overtime-related bugs.

We have manually inserted a starvation bug into the router’s
arbitration logic. The arbiter in OpenPiton’s router employs
a starvation-free round-robin arbitration strategy. Every port
will be granted the highest priority cyclically. Fig. 11 provides
the priority table and the details of the injected bug. When
an output port is assigned to input port A, the next highest
priority input request in the subsequent arbitration is given to
input port B. Similarly, when the output port is granted to B,
the following highest priority input request is directed to C,
and so on. We inject the bug by switching the priorities of
input ports A and E when the output port is allocated to B.
This could cause the starvation of E under certain conditions.

Fig. 11 also depicts the path that can trigger the bug. Here,
g(X) represents the output port is being granted to input port X.
r(X) represents input port X is requesting for the output port.
To trigger the bug, we must avoid granting the output port to C
or D, as this would allow E to get high priority and be granted,
causing the bug to be missed. Therefore, when E makes a
request, the output port must be granted to either input port A
or B. If it is granted to A, then B should be active, ensuring
that the next arbitration grants the output port to B. If it is
granted to B, the following arbitration must grant the output
port to A, requiring ports C and D to be inactive. This implies
that the input sequences from different ports must always meet
complex conditions over an extended period, long enough to
surpass the overtime threshold, which is quite challenging for
random testing.

In our experiment, we compare random testing and overtime
directed fuzzing. To evaluate the necessity of our time-based

Injected starvation bug and starvation path.Fig. 11.

Fig. 12. Comparison between random testing and fuzzing on starvation bug
detection.

fuzzing approach, we also incorporate line-coverage-guided
fuzzing for a comprehensive comparison. We use the router
fuzzing environment and set the overtime threshold of 1024
clock cycles, approximately five times the normal waiting
time. To ensure the input sequences are long enough to trigger
this threshold, we set initial seed file length to 100 bytes,
equivalent to five instructions for each input port.

Fig. 12 illustrates the maximum waiting time during ver-
ification with different methods. Despite running for 12 h,
random testing could not detect the bug. In contrast, overtime
directed fuzzing could identify the bug in less than half an
hour. We also demonstrate that using time-based feedback is
essential for uncovering overtime-related vulnerabilities. On
the other hand, using coverage as feedback cannot provide
relevant guidance for such bugs and does not speed up the
bug-finding process.

The experimental results in Section VI-A–VI-C show that
for verification targets inaccessible through random testing or
CRV in NoC verification, fuzzing can achieve them automat-
ically. With the analysis of coverage or overtime feedback,
fuzzing can generate test inputs of higher quality. This could
reduce the human labor required for writing high-quality
inputs and automate the NoC verification process.
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VII. DISCUSSION

A. Formal Verification of NoC

Our research is an initial attempt to automate NoC verifica-
tion at the RTL level. We also attempts using SymbiYosys [42],
a popular open-source formal verification tool, to verify the
starvation bugs detailed in Section VI-C. However, the formal
tool cannot automatically solve that property within 24 h.
We encountered a state explosion due to the time depth
involved. It is important to note that key properties in NoC
like starvation and deadlock are all liveness properties. For a
router, it may take dozens of clock cycles to send or receive
a packet, and potentially even longer if waiting is required.
This necessitates that formal methods induct for hundreds of
clock cycle steps to trigger the bugs, leading to a significant
time depth and resulting in a state explosion that cannot be
effectively addressed by formal methods.

Generally, formal methods are employed at an abstract
modeling level to verify the correctness of NoC algorithms,
such as routing and arbitration algorithms [5], [6], [7], [8], [9].
These formal methods cannot be directly applied to the RTL
level due to state explosion. Consequently, at the RTL level,
simulation-based methods, such as fuzzing, are indispensable
for bug detection. Despite formal methods can guarantee an
algorithm’s correctness, they cannot ensure that the algorithm
is accurately implemented at the RTL level. Thorough testing
at the RTL level is also necessary. In this context, NoC fuzzing
can serve as an approach to automate the NoC verification.

B. Time–Cost Distribution in Hardware Fuzzing

The execution speed of fuzzing is considerably slower than
random testing. When testing router covergroup1 with
800 points, fuzzing’s execution speed is approximately twice
as slow as that of random testing. This discrepancy becomes
more pronounced with larger coverage number.

We have examined the time expenses associated with
each phase in a fuzzing process. Fig. 13 provides a visual
representation of the time distribution for each part. We use an
initial seed length of 100 bytes when evaluating the influence
of different coverage sizes on fuzzing in the first histogram.
We set coverage size of 1024 when comparing the impact of
varying seed lengths on fuzzing in the second histogram.

The first histogram underscores a scalability issue related to
the size of coverage during fuzzing. The collection time for
coverage increases substantially with the growth in coverage
size, thereby impeding the efficiency of fuzzing. This is
primarily due to the slow speed of VCS’s coverage collection
mechanism. Currently, when fuzzing requests coverage data,
it instructs VCS to dump the coverage into its database in
a structured and hierarchical manner. Subsequently, fuzzing
retrieves the data through UCAPI. However, fuzzing only
requires a coverage vector reflecting the hit count of each
coverpoint, making current process of extracting a detailed
report inefficient. The scalability issue could be addressed if
the simulator provides a direct coverage interface for fuzzing.
This solution is beyond the scope of this article and is
earmarked for future work.

As depicted in the second histogram, a longer initial seed
length results in increased simulation time, potentially testing

Fig. 13. Compare the time partitioning across different coverage sizes and
seed lengths in router fuzzing.

more packet sequences within a single fuzzing loop. When the
seed length exceeds 1000 bytes, the simulation time ceases to
increase. This is attributed to the effective trimming operation
of AFL fuzzer. From a time-efficiency perspective, a longer
seed proves more beneficial as it lessens the number of
fuzzing loops and saves on coverage collection time. However,
our previous experiments have indicated that, even with the
current low-efficiency coverage collection mechanism, the use
of shorter seed lengths is justified. Although it increases the
frequency of fuzzing loops and spends more time in coverage
collection, the benefits outweigh the costs.

C. Comparison of Software Network Fuzzing

There are three related verification problems for fuzzing
network systems: 1) verifying a single network component;
2) verifying the network system; and 3) verifying the overall
functionality of network according to some application proto-
cols. Our research on NoC primarily addresses the first two
levels. We focus on the NoC packet transfer protocol and fuzz
the NoC router and the network. Our research does not include
the potential high-level application protocols of NoC.

Numerous fuzzing studies have been conducted to ver-
ify software network protocols (e.g., FTP [43], RTSP [43],
SNMP [44], and TCP [45]). Some studies use grammar-based
fuzzing [46], [47], [48]. They utilize hard-coded or user-
defined grammar specifications to guide test case generation.
These specifications define data structure or field types of
packets to be generated. Several recent approaches use stateful
protocol fuzzing [43], [49], [50]. They learn the state models
of network protocols to enhance seed selection and mutation.

In our research, we adapt the principles of grammar-
based fuzzing to NoC verification. We define an NoC-specific
grammar to generate a diverse array of NoC packets as stimuli.
Given the simplicity of NoC packet transfer protocols, which
are hardware-limited and state-light compared to software
protocols, we have not incorporated a state model. Our primary
verification challenge lies in ensuring RTL correctness, which
is considerably more complex and prone to errors compared to
software coding. Once we have tested the basic functionality of
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NoC packet transfer, to verify the overall functionality of NoC,
including its high-level application protocols, some advanced
software network fuzzing techniques, such as state model,
could provide valuable insights. This could be considered as
a promising avenue for our future research.

D. Future Work

In Section V, we present three key insights about fuzzing,
derived from a small number of experiments with a router as
our DUT. We recognize that these conclusions are lack the
support of extensive experimental evidence. Conducting more
experiments with a greater variety of DUTs and fuzzing targets
in the future could help solidify these findings.

In our fuzzing framework, we use AFL as a black box,
employing it as the primary mutation engine. However, upon
closer examination, we observe that not all mutation mech-
anisms in AFL are beneficial for our NoC fuzzing. Our
experiments find that the majority of beneficial mutations are
generated by AFL’s havoc and splice operations, contributing
to 47% and 53% of all useful mutations, respectively. This
observation implies a redundancy in most of AFL’s opera-
tions. Therefore, future research could focus on understanding
the reasons behind this redundancy and developing a more
efficient mutation engine specifically tailored for fuzzing
hardware designs.

At present, our efforts are primarily focused on automat-
ing the industrial verification of NoC. It is necessary to
extend the applicability of our method to a wider range of
DUTs. Regrettably, there are no open-source or commercial
tools that enable the implementation of hardware fuzzing
for industry-standard IC verification workflows. Therefore,
further development of a comprehensive hardware fuzzing tool
oriented toward UVM and general hardware designs is an
essential pursuit.

VIII. CONCLUSION

In this article, we show how fuzzing methods can be used to
automate the industrial NoC verification process. Specifically,
we developed a hardware fuzzing framework that integrates the
widely used software fuzzer AFL into NoC UVM testbench.
Our results suggest that fuzzing can greatly reduce manpower
demands and accelerate the verification process. For NoCs,
we have devised a unique hardware fuzzing grammar for
multiport DUTs. We utilized fuzzing at various stages of
NoC verification, including router and network verification, as
well as vulnerability detection. Our fuzzing methodology was
evaluated through the case study of the OpenPiton NoC. The
evaluation results show that our approach can automatically
achieve complete line and branch coverage and complete
coverage closure of some complex functional covergroups.
Fuzzing was also successful in uncovering hidden starvation
bugs, demonstrating its superiority over random testing.
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