
IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 1

PREFENDER: A Prefetching Defender against
Cache Side Channel Attacks as A Pretender
Luyi Li, Jiayi Huang, Member, IEEE , Lang Feng∗, Member, IEEE , Zhongfeng Wang∗, Fellow, IEEE

Abstract—Cache side channel attacks are increasingly alarming in modern processors due to the recent emergence of Spectre and
Meltdown attacks. A typical attack performs intentional cache access and manipulates cache states to leak secrets by observing the
victim’s cache access patterns. Different countermeasures have been proposed to defend against both general and transient execution
based attacks. Despite their effectiveness, they mostly trade some level of performance for security, or have restricted security scope.
In this paper, we seek an approach to enforcing security while maintaining performance. We leverage the insight that attackers need to
access cache in order to manipulate and observe cache state changes for information leakage. Specifically, we propose PREFENDER,
a secure prefetcher that learns and predicts attack-related accesses for prefetching the cachelines to simultaneously help security and
performance. Our results show that PREFENDER is effective against several cache side channel attacks while maintaining or even
improving performance for SPEC CPU 2006 and 2017 benchmarks.

Index Terms—Security, Cache Side Channel Attacks, Prefetcher.

✦

1 INTRODUCTION

Over the last few decades, continuing optimization of mi-
croarchitecture has led to a dramatic increase in its complex-
ity, which might unfortunately be accompanied by many
potential security vulnerabilities. As a result, the cache side
channel attacks [1], [2] become serious threats to modern
processors. For example, it is possible for Spectre [3] and
Meltdown [4] attacks to steal almost any data in the mem-
ory, by leveraging vulnerabilities of the out-of-order exe-
cution and the speculative execution. More seriously, these
two attacks can threaten most of the modern commercial
processors from Intel, AMD, and ARM. Lots of variants of
cache side channel attacks have also been found in recent
years [5], so the defense methods are urgently needed to
enforce the security of the processors.

Cache side channel attacks exploit the cache state
changes for information leakage [6]. For example, the at-
tacker can infer the cache footprint of the victim program
by the time differences between cache hits and cache misses
when accessing the data [3], [4]. Different countermea-
sures have been proposed for either general or transient
execution based attacks through isolation [7], conditional
speculation [8], stateless mis-speculative cache accesses [9],
noise injection [10], [11], prefetching [12], [13], etc. However,
these countermeasures either incur performance overhead,
or have limited scope of security, such as only defending
against the attacks conducted cross-core, so they failed to
benefit both security and performance.

In this paper, we propose an approach to defeating
the cache side channel attacks while maintaining or even

∗The corresponding authors. †This work was partially supported by Na-
tional Natural Science Foundation of China (Grant No. 62204111) and
Shuangchuang Program of Jiangsu Province (Grant No. JSSCBS20210003).

. Digital Object Identifier 10.1109/TC.2024.3377891

improving the performance. During the attack, the attacker
obtains the cache state changes made by the victim by ac-
cessing the cache. If the access patterns of both the attacker
and the victim can be learned, the processor can prefetch the
data that can further change the cache state to confuse the
attacker. Besides, effective prefetching can help performance
if the prefetcher is able to predict the access patterns of the
benign programs.

We propose PREFENDER, a prefetching defender to de-
feat cache side channel attacks while preserving perfor-
mance benefits for benign programs. Specifically, three low-
cost designs are proposed, which are called Scale Tracker
(ST), Access Tracker (AT), and Record Protector (RP). Scale
Tracker is able to prefetch the data that the victim may
access, by tracking the target address calculation history
of the memory instructions. Access Tracker can learn the
cache access patterns of the attackers and prefetch data for
confusion, even if the attackers perform intentional ran-
dom accesses. Record Protector can link Scale Tracker and
Access Tracker to prevent noisy instructions and accesses
from affecting PREFENDER, and further enhance the robust-
ness of PREFENDER. Furthermore, effective prefetching of
PREFENDER also maintains or improves performance. The
contributions of this work are as follows:

• PREFENDER is proposed, where a novel address predic-
tion and a noise preventing approaches for prefetching are
proposed. PREFENDER can prevent wide range of general
access-based cache timing side channel attacks including
both single-core and cross-core attacks, while maintaining
the performance.

• A new approach to analyzing cache access patterns is
proposed. Scale Tacker and Access Tacker are designed
to realize the runtime analysis for effective prefetching.

• An approach is proposed to protect PREFENDER from
being affected by the noisy memory instructions and ac-
cesses. To realize this, Record Protector is designed to link

Author’s version. 0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 2

the scale tracker and the access tracker to help identify the
cache accesses from the attackers.

• The detailed experiments show the effectiveness and the
robustness for defeating cache side channel attacks. Be-
sides, PREFENDER also brings the performance improve-
ment, and is highly compatible with other prefetchers.

For the following sections, Section 2 introduces the back-
ground and the threat model. The related work is discussed
in Section 3, and the details of PREFENDER are proposed in
Section 4. Then the experiments are described in Section 5.
Finally, Section 6 concludes the paper.

2 BACKGROUND AND THREAT MODEL

2.1 Cache Side Channel Attacks

Cache side channel attacks are to detect the cache state
changes caused by the victim’s memory accesses and further
infer the sensitive information of the victim from these
changes. In a cache side channel attack, a round of attack is
typically made up of three phases. During the first phase,
the attacker initializes the cache states. For example, the
attacker usually uses flush instructions to invalidate the
cachelines or loads irrelative data to evict the original cache-
lines. Then, in the second phase, the attacker does nothing
but wait for the victim to be executed. During the execution,
the victim accesses its data and causes changes in the cache.
In the last phase, the attacker measures which cache state
is different from the initialized state and therefore deduces
what data the victim has accessed.

Low Latency

Flush+Reload

Attacker

Flush Attacker Data Access Victim Data Access

Victim Attacker

Evict+Reload

Attacker Victim Attacker

Prime+Probe

Attacker Victim Attacker

Cachelines

Low Latency

High Latency

Cachelines

Cachelines

Attacker Data Victim Data

Phase 1 Phase 2 Phase 3

Fig. 1. The examples of Flush+Reload, Evict+Reload, and Prime+Probe.
The secret can be revealed by the only low (or high) latency eviction
cacheline.

One kind of widely used cache side channel attacks is
the timing-based attack, where the cache states (hit or miss)
can be identified by access latencies. Figure 1 illustrates
three attacks, including Flush+Reload [2], Evict+Reload [14],
and Prime+Probe [6]. Take Flush+Reload as an example,
which is based on page sharing between the attacker and the
victim. In phase 1, the attacker flushes all the cachelines that
may be accessed by the victim. Each cacheline is called an
eviction cacheline, and they compose an eviction set. In phase

2, the victim loads the data that are related to the secrets,
which is also called secret-dependent data. In phase 3, the
attacker accesses the eviction set and measures the access
latency of each eviction cacheline. If the attacker detects a
low latency, i.e., a cache hit, the secret might be inferred
from the address of this cacheline. For example, assuming
the cacheline size is 64 bytes, if the victim loads a secret-
dependent data array[s×64] in phase 2, where s is the
secret. During phase 3, array[768] will be accessed with
a cache hit; the attacker can infer the secret is s=768/64=12.

Compared with Flush+Reload, Evict+Reload mainly dif-
fers in the way of phase 1. In Evict+Reload, the attacker
loads some irrelative data to evict the cachelines instead of
flush instructions. In contrast, in Prime+Probe, the attacker
and the victim do not share memory pages. Therefore, the
attacker has its own data which maps to the same cache sets
with the victim’s data. In phase 1, the attacker evicts the
cachelines by loading its own data. In phase 2, the victim
accesses its data and evicts the attacker’s data. In phase 3,
the attacker re-accesses its data and detects if there is a high
latency, i.e., a cache miss. This cache miss can reveal the
victim’s secret. The three attacks share the same key idea,
which is to leverage the access latency to identify the secrets.

2.2 Prefetching

It is widely known that the memory wall is one of the major
bottlenecks of modern processors. One approach to reduc-
ing the memory access latency is prefetching, which refers
to predictively loading data into the cache in advance. If the
processor requests the data later, it will encounter a cache hit
and the access latency is reduced. This technique is usually
implemented by the hardware module named prefetcher.
Such typical examples include Tagged Prefetcher [15], Stride
Prefetcher [16], Feedback Directed Prefetcher [17], Address
Correlation Based Prefetcher [18], [19], etc.

2.3 Threat Model

We refer to work [20] to categorize the attacks. The cache
timing side channel attacks that are access-based (types 2
and 4 [20]) are included in our threat model, which contains
all the attacks described in Section 2.1. Besides, both single-
core and cross-core attacks are included. In these attacks,
the attacker is able to modify the states of any cachelines
(usually the eviction cachelines) and measure their access la-
tencies. The data at the eviction cachelines are either shared
or conflict between the victim and the attacker. Besides,
the attacker needs and is able to access multiple eviction
cachelines and leverages the timing difference between their
access latencies to infer the secret of the victim1.

3 RELATED WORK

3.1 Cache Side Channel Attacks

Cache side channel attack is one of the most powerful micro-
architectural side channel attacks, where the attacker can
directly detect the cache states and obtain accurate timing

1. As each cacheline is not necessarily accessed multiple times in our
threat model, the attack in works Prefetch-guard [10], PrODACT [21],
and Reuse-trap [11] is out of the scope.

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 3

TABLE 1
Comparisons with related work in threat model, approach, and performance overhead.

Conditional NDA SpecShield InvisiSpec SafeSpec MuonTrap SpecPref Catalyst StealthMem DAWG CEASER RPcache SHARP PREFENDERSpeculation [8] [22] [23] [9] [24] [25] [26] [27] [28] [7] [29] [30] [31]
Threat Models Speculative Execution Attacks Cache Timing Side Channel Attacks

Approaches Speculation Restriction Shadow Structures to Hold Speculative Data Cache Partition New Cache Replacement Policy Prefetch
Performance 13%-54% 11%-125% 10%-73% 21%-72% -3% 4% 1.17% 0.70% 5.90% 15% 1% 0.30% 0% -1.69%

Overhead /-6.28%

information for inferring the secrets. Many researchers have
studied various types of effective attack methods.

Kosher [32] firstly mentioned that the timing difference
in the cache can be exploited to extract cryptographic
secrets. Osvik [6] proposed Evict+Time and Prime+Probe
methods to attack the AES algorithm [33]. In 2014, Yarom [2]
proposed a more powerful and more fine-grained method,
called Flush+Reload. This method utilizes the flush instruc-
tion supported by some architectures, for example, clflush
in x86. Moreover, since it is based on shared memory, it has
much lower noise and finer granularity, e.g., a single cache-
line. The Flush+Reload has more variants, one of which is
Evict+Reload [14]. The Evict+Reload is applicable to devices
that do not support a flush instruction because it replaces
the flush behavior with the cache eviction.

Research on cache side channel attacks continues to
spring up, especially after Spectre [3] and Meltdown [4]
attacks were reported. These attacks exploit one of the most
important microarchitectural optimizations, speculation, to
get sensitive data. They and their variants show that many
critical microarchitectural components, including Branch
Target Buffer (BTB) [3], Return Stack Buffer (RSB) [34], Float-
ing Point Unit (FPU) [35], Page-table Entry [5], Intel SGX
enclave [36], may inadvertently leak their internal states,
including potential secrets while running. However, even if
these attacks are based on different hardware components,
most of them still leave the secrets in the cache and use cache
side channel attacks such as Flush+Reload, Evict+Reload,
Prime+Probe, etc., as mentioned before, to extract the in-
formation. Therefore, PREFENDER has a broad defense scale
because it is able to defend against the cache side channel
attacks that exploit the timing difference of cache access
latency, including both traditional and transient execution
based ones.

3.2 Microarchitectural Defenses
Many countermeasures have been proposed to defend
against cache side channel attacks, including software and
hardware approaches. Software defenses are more compati-
ble with current platforms, but they may not fundamentally
defeat the attacks, and they can incur high performance
overhead. Therefore, microarchitectural defenses are further
proposed in many studies.

The comparisons between PREFENDER and related work
are shown in Tables 1 and 2. Cache side channel attacks
can be combined with transient speculative execution for
data leakage, such as Spectre [3] attacks. To mitigate cache
side channel attacks caused by transient execution, some
of the prior work restricts speculation by constraining the
execution of speculative loads, such as Conditional Spec-
ulation [8], NDA [22] and SpecShield [23]. They seek to
identify the dangerous load instructions that can be poten-
tially exploited by attackers and then delay their execution
until all the past instructions are guaranteed to be safe.

However, this method may lead to high overhead if they fail
to accurately detect the dangerous loads. Another category,
such as InvisiSpec [9], SafeSpec [24] and MuonTrap [25],
designs a shadow structure to temporarily hold the data
brought by speculative loads during transient execution, but
they require many modifications to the existing hardware
systems. Although SafeSpec [26] achieves a 3% performance
improvement by avoiding cache pollution, its threat model
is attacks on transient speculative execution, which are dif-
ferent from our threat model on cache timing side channel
attacks. SpecPref [26] also aims at speculative execution vul-
nerabilities and prefetchers, but the role of the prefetchers in
SpecPref is the source of the data leakage instead of the way
of defense, which is a different threat model.

The above defenses only prevent data leakage caused
by transient execution. They are ineffective in defending
against other traditional cache side channel attacks. For the
traditional ones, some new cache policies were introduced.
Catalyst [27] and StealthMem [28] partition the cache into
different regions for private data and shared resources,
respectively. For Catalyst [27], software modifications are
needed. DAWG [7] achieves a higher granularity, which
dynamically partitions cache ways to avoid cache sharing
among different security domains. However, these methods
require programmers to rewrite the source codes to flag the
sensitive data. In contrast, the key idea of CEASER [29] and
RPcache [30] is to randomize the cache mapping algorithm
in order to prevent the attacker from evicting the cache.
SHARP [31] also designs a new cache replacement policy
to prevent the eviction and flush from forcing out dedicated
cachelines. It requires operating system support to handle
interrupts generated by alarm counters and does not defend
against single-core attacks in the private cache. Indicated
in Table 1, almost all the approaches for cache timing side
channel attacks pay some level of performance for the
security strength, or are not able to defeat general cache
side channel attacks. To sum up, it is always a challenging
task to design both efficient and effective defenses for both
security and performance.

Besides the above studies with different approaches
from PREFENDER, there are also multiple studies using
prefetchers for defense, as summarized in Table 2. Prefetch-
guard [10], PrODACT [21] and Reuse-trap [11] propose
several methods to detect the spy and leverage prefetching
to obfuscate the spy based on previously recorded infor-
mation, sharing the same idea with PREFENDER. However,
their threat model is different from ours. They focus on
covert channel attacks. One key feature their defenses are
based on is that the attacker needs to access one cacheline
multiple times. As this assumption is not included in our
threat model, they cannot defeat the targeting attacks of this
paper. In addition, the attacker in our threat model might
access the caches randomly to mislead the prefetchers, and
this is not handled by the studies [10], [21], [11]. Moreover,

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 4

TABLE 2
Comparisons with related work using prefetching. (“-” stands for that the information is not mentioned in the corresponding work.)

Prefetch-guard [10] PrODACT [21] Reuse-trap [11] Disruptive BITP [13] PREFENDERPrefetching [12]

Th
re

at
M

od
el

s

Access-Based Cache Attacks (Types 2 and 4 [20])
Flush+Reload

Single-Cacheline
√ √ √

- - ×
Multi-Cacheline × × × - -

√

Evict+Reload
Single-Cacheline

√
-

√
-

√
×

Multi-Cacheline × - × -
√ √

Prime+Probe
Single-Cacheset

√ √ √
-

√ √

Multi-Cacheset × × ×
√ √ √

Timing-Based Cache Attacks (Types 1 and 3 [20])
Evict+Time × × × ×

√
×Cache Collision Attack

Single/Cross-Core Attacks
Single-Core

√ √ √ √
×

√

Cross-Core
√ √ √ √ √ √

Te
ch

ni
qu

es

Considering
× ×

√
× ×

√
Random Access

Pattern
Defense Cacheline Cacheline Cacheline Cacheset Cacheline CachelineGranularity

Handling Benign × × × ×
√ √

Noise Accesses
No Software × × ×

√ √ √
Modification

Pe
rf

or
m

an
ce

&
H

ar
dw

ar
e

Hardware
Overhead

High High High Low Low Low
One conflict miss

tracker and one flush
instruction tracker per

cache set.

One conflict
miss tracker

per cache set.

One reuse
distance

counter per
cache set.

One marked bit per
cache set,

randomization and
set-balancer logic.

BACK-INV
command

tracker.

ST+AT+RP,
detailed in
Section 5.5.

Performance - - - 0% (SPEC 2006) 1.10% (SPEC 2006) 1.69% (SPEC 2006)
Improvement 6.28% (SPEC 2017)

no techniques are proposed in these studies to handle the
noise from the benign memory accesses. These studies need
software modifications and can be intrusive. For hardware
consumption, since they need one tracker for each cache
set, the hardware overhead can be highly increased with
the growth of the cache size. Besides, Reuse-trap needs
to know the victim’s process ID in advance to record the
victim’s cache misses, which may cause software modifi-
cations. Finally, they still trade some level of performance
and fail in gaining performance improvement that can be
achieved with prefetching. Disruptive Prefetching [12] also
modifies the prefetchers to defeat cache side channel attacks.
But it manipulates in a granularity of cacheset instead of
cacheline, and only Prime+Probe is discussed, so the secu-
rity is restricted. Meanwhile, it may cause cache pollution
due to its random prefetching policy. BITP [13] prefetches
the data when identifying cross-core back-invalidation-hits
in multicore systems. So, it targets cross-core attacks but
not single-core attacks. In contrast, PREFENDER can also be
applied to single-core attacks as it is able to filter the benign
memory accesses in the single-core executions. Both BITP
and PREFENDER improve performance, and PREFENDER
achieves higher improvement.

Compared with related work, PREFENDER is a com-
pletely hardware-based and resource-efficient method with-
out modifying any policy of speculative execution or cache
in modern processors. It can effectively defend against
the multi-cacheline (cacheset) access-based cache attacks, as
well as single-core and cross-core attacks. It also considers
the random accesses from the attacks and the noise from
the benign accesses, and the defense granularity is each
cacheline. On the premise of ensuring security, it further
achieves a performance enhancement better than prior work
through accurate runtime analyses and well-designed hard-
ware prefetching strategies.

4 PREFENDER DESIGN

In this section, the overview of the proposed PREFENDER
shown in Figure 2 is first introduced, and the details of Scale
Tracker (ST), Access Tracker (AT), and Record Protector (RP)
are then elaborated.

Data

Controller

Prefender

Access Buffer

Calculation Buffer

Basic Pref.

reg0: fva, screg0: fva, sc

reg1: fva, screg1: fva, sc

......

L1D

L2

Memory

Core0

L1I ... L1D

Core_n-1

L1I

Memory Stage Execute Stage

ATAT

STST

...

Inst0 Inst1

......

RPRP

sc0, BlkAddr0sc0, BlkAddr0

sc1, BlkAddr1sc1, BlkAddr1

......

Scale Buffer

Prot. Protected

Fig. 2. The overall design architecture of our system.

4.1 Overview

According to Section 2.1, three phases need to be performed
by a cache side channel attack so the attack can be de-
feated by interfering with one of the phases. PREFENDER
is designed in each L1Dcache for interfering with the at-
tacks by prefetching the eviction cachelines. Specifically,
PREFENDER includes Scale Tacker (ST) and Access Tacker (AT)
to interfere with the second and third phases, respectively.
Record Protector (RP) can further protect PREFENDER from
being interfered with by the noisy memory instructions and
accesses, and enhance the robustness. A basic prefetcher
(Basic Pref. in Figure 2) is also supported, such as the Tagged
or Stride prefetcher. The scale tracker, the access tracker,
and the basic prefetcher are able to prefetch data, while the
record protector can increase the accuracy of predicting the

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 5

eviction cachelines. Note that the basic prefetcher can only
help with performance, while the scale tracker, the access
tracker, and the record protector can enforce security and
also improve performance to some extent.

The scale tracker aims at predicting the eviction cache-
lines that might be accessed by the victim program during
phase 2. The prediction is based on the arithmetic calcu-
lation histories of the victim instructions, which are stored
in the Calculation Buffer. The scale tracker will predict and
prefetch additional eviction cachelines after a victim instruc-
tion loads the data into an eviction cacheline in phase 2. The
prefetched eviction cachelines can mislead the attacker since
the attacker is unable to distinguish them from the cacheline
loaded by the victim instruction. An example is shown at the
top of Figure 3.

The access tracker aims at predicting the attacker’s ac-
cess patterns of the eviction cachelines for measuring the
access latency during phase 3. The access tracker leverages
the insight that a few load instructions are intensively used
for the attack and stores the attacker’s access patterns in
the Access Buffer. An example is shown at the bottom of
Figure 3, where the access tracker prefetches the eviction
cacheline before the attacker accesses it and measures the
access latency. This can also mislead the attacker.

Flush Victim Data Access

Defense against Flush+Reload by ST

Attacker Victim Attacker

Defense against Flush+Reload by AT

Attacker Victim Attacker

Low Latency

Low Latency

Cachelines

Cachelines

Victim Data

Prefender

5 4 7 8 9 10

5 6 7 8 9 10

Prefender
4

Prefender Prefetching

Fig. 3. The example of the defenses against Flush+Reload attacks (The
number near an arrow represents the access time, and the number
inside each rectangle represents the first time when the corresponding
cacheline is accessed).

Although the access tracker can interfere with phase 3
to mislead the attacker, since phase 3 is much longer than
phase 2, there is more noise during the phase, which may
affect the prediction of the access tracker. Because phase 2 is
performed by the victim, the victim’s access patterns learned
by the scale tracker are regarded as trusted patterns, and
can help correct the prediction of the access tracker. The
record protector is designed to link the scale tracker and the
access tracker to prevent the noise from affecting the access
tracker. The record protector can record the victim’s cache
access prediction of the scale tracker into the Scale Buffer. If
the attacker’s access pattern in the access buffer matches
a predicted victim’s cache access in the scale buffer, the
corresponding information in the access buffer is protected
from being interfered with by the noise, and the prefetching
is guided by the records in the scale buffer.

Note that ST and AT also work for cross-core attacks. An
example is shown in Figure 4. In this example, the programs
of the attacker and the victim are on different cores with
different L1D caches, but they share the same last level cache

(LLC). For ST, after the attacker flush the eviction cachelines,
when the victim accesses the data on another core, ST will
prefetch the additional eviction cacheline similar as Figure 3,
both in victim’s L1D cache and LLC. For phase 3, the cross-
core attack originally can identify the only LLC hit to infer
the sensitive information, but with ST, there are two LLC
hits and the attacker is not able to distinguish which one is
accessed by the victim’s program. For AT, similar as the case
of single-core attack, AT can directly prefetch the eviction
cachelines into both attacker’s L1D cache and LLC in phase
3. As the attacker keeps accessing the eviction cachelines,
AT will keep prefetching, which can prefetch the cacheline
in LLC accessed by the victim to L1D cache, and can directly
mislead the attacker.

Attacker’s L1D Victim’s L1DAttacker’s L1D Victim’s L1DAttacker’s L1D Victim’s L1D

Attacker’s L1D Victim’s L1DAttacker’s L1D
Attacker

Victim’s L1D
VictimPrefender Attacker

Flush Victim Data Access

Victim Data

Prefender Prefetching

Invalid Victim Data

Low Latency

(LLC Latency)

Attacker Victim Attacker

Low Latency

(L1D Latency)

7 4 6 11

7 8 9 10 11

Prefender
4,5,6

Defense against Cross-Core Flush+Reload by ST

Defense against Cross-Core Flush+Reload by AT

Attacker’s L1DVictim’s L1D

LLCLLCLLC

LLCLLCLLC

5

Fig. 4. The example of the defenses against cross-core Flush+Reload
attacks (The number near an arrow represents the access time, and
the number inside each rectangle represents the first time when the
corresponding cacheline is accessed).

Since the key idea of the scale tracker, the access tracker,
and the record protector is to correctly learn cache access
patterns for prefetching, effective prefetching on benign
loads can also improve performance while enforcing secu-
rity. However, there are four major challenges for effective
prefetching for PREFENDER.

C1. During phase 2, the victim may only access one eviction
cacheline. Even though there are other eviction cache-
lines that may also be accessed, they may not be sim-
ply contiguous. How to effectively predict the access
pattern given limited accesses (even single access) is
challenging, which we overcome with the scale tracker.

C2. During phase 3, the eviction cachelines might be ran-
domly accessed by the attacker. This can bypass some
prefetchers such as Stride prefetcher. Predicting the
eviction cachelines based on a random access pattern
is challenging, which is tackled by the access tracker.

C3. During phase 3, there might be noisy memory instruc-
tions executed, so that the records of the attacker’s
access patterns in the access buffer are overwritten by
the noisy instructions. In this case, the access tracker
might be bypassed. We tackle this problem by using
the record protector.

C4. During phase 3, if some non-eviction cachelines are
also accessed by the same attacking instruction, the
prefetching of the access tracker can be affected by
these noisy accesses. We tackle this by using the record
protector. Note that the challenge C3 is related to over-

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 6

writing the attacker’s recorded access behaviors, while
the challenge C4 is about extra misleading behaviors.

4.2 Scale Tacker

The prediction of the Scale Tracker (ST) is based on the target
address calculation of the victim load. For example, if the
load’s target address is calculated by 128×i+192, where i
is an integer variable, the target address can only be 192,
320, 448, etc. After the virtual address is translated to the
physical address, if paddr is the target physical address
for this time, it can be deduced that paddr-128, paddr,
paddr+128, etc., may also be accessed by this load if they
are in the same page. In this way, we can predict the access
pattern of the victim instruction in phase 2. The main goal
is to learn the 128 as in the example, which is called the scale
in our work.

The target address of a load is usually stored in the
registers, so the scale tracker needs to track how the register
values are calculated. This can be realized by recording all
the calculation history of each register, but it can incur un-
acceptable hardware consumption. Therefore, only addition
and multiplication (including subtraction and shifting) are
considered, as they are widely used in the calculation, and
their calculation history can be tracked by using only two
values for each register.

We use two values to track the history for each register
r: a fixed value fvar and a scale scr, which are stored in
the calculation buffers. The fvar is needed to help track
the scale, and it records the calculation result if all the
calculations of register r only depend on constant values
(immediate numbers). If the value of r depends on some
variables such as the loaded memory values, fvar is not
applicable (NA).

The cache access pattern predicted by the scale tracker
mainly depends on the scale scr. Usually, array access
address in a loop is calculated as base+scale×i (e.g.,
base+128×i), where base is the base address and i is an
integer variable. The above calculation will be propagated
through some registers, and the final calculation result is
stored in a register and used as the target address of a
load to access the array. One task of the scale tracker is to
track the scale by propagating scales and fixed values from
registers to registers during the calculations. Assuming the
target address addr is stored in register r, we can obtain the
scale scr related to r. When one load is executed even for
a single time, the scale tracker can predict that the nearby
cachelines (addr ± scr) may also be accessed by the same
load. This is the access pattern tracked by the scale tracker.

The scale tracker can also support more complicated
access patterns, such as 128×i+32×j+imm, where i and j are
variables as the indices and imm is an immediate number.
In this example, given an imm, if there is a pair of i and j
makes the result to be 652, there may be another pair (e.g.,
i increments 1) to make the result as 652+128. The 128 can
be scr in this calculation. Similarly, 32 and any multiples of
them like 256, 512, etc., can also be scr. Note that an access
pattern that involves multiplications of several variables
(such as (128i0i1i2+32j0×16j1)×(48k0+imm)) can also be
handled by propagating the scales and the fixed values
during the calculations.

TABLE 3
The rules to calculate fvard and scrd. (rd is the destination register;

“-” is not applicable. †The rule is also for subtraction when + is
replaced by −. ‡The rule is also for shifting when × is replaced by >>

or <<.)
Conditions Results

Instruction Arg. a Arg. b fvars0 fvars1 fvard scrd

load rd a
imm0 - - - imm0 1

imm(rs0) - - - NA 1

add rd a b†

rs0 imm0 NA - NA scrs0

rs0 imm0 Valid - fvars0 + imm0 1
rs0 rs1 Valid Valid fvars0 + fvars1 NA
rs0 rs1 NA Valid NA scrs0

rs0 rs1 Valid NA NA scrs1

rs0 rs1 NA NA NA min(scrs0 , scrs1)

mul rd a b‡

rs0 imm0 NA - NA scrs0 × imm0

rs0 imm0 Valid - fvars0 × imm0 1
rs0 rs1 Valid Valid fvars0 × fvars1 NA
rs0 rs1 NA Valid NA scrs0 × fvars1

rs0 rs1 Valid NA NA fvars0 × scrs1

rs0 rs1 NA NA NA scrs0 × scrs1

Otherwise - - - - NA 1

The proposed rules for calculating scr (and fvar, which
can help calculate scr) are illustrated in Table 3. When a
program is started, the fixed and scale values are initialized
to NA and 1, respectively. During the execution of the pro-
gram, the fixed value and scale of the destination register rd
are calculated according to the operand and the propagated
values of the source registers.

For data movement instructions, if an immediate num-
ber is loaded to rd, fvard is set to the number. If a value is
loaded from memory to rd, fvard and scrd are reinitialized
since we conservatively regard the loaded value as an
unknown variable.

For addition, when fvard is calculated by one immediate
number and one register rs0, if rs0’s fvars0 is NA, scrd is
the same as scrs0 since adding the immediate number as the
offset has no effect on the scale. If fvars0 is valid, fvard is the
addition of fvars0 and the immediate number since both are
fixed values. When adding two registers, if only one of them
has a valid fixed value, the scale of the destination register
is the same as the scale of the source register without a valid
fixed value. If neither of the source registers has a valid
fixed value, the scale of the destination register can be the
minimum scale of the two registers. The reason is that when
the values of two registers are added, both scales can be
used as the new scale. Using the minimum one can reduce
the possibility of making the scale larger than a page.

For multiplication, the calculations of fvard and scrd
are similar to those of addition, except the consideration
of multiplicative factors due to multiplication. If any other
calculations are involved, to be conservative, the destination
register of the calculation is reinitialized.

When an instruction load rd imm(rs) or the equivalent
instruction is executed, assuming the target address for this
time is addr′, then addr′±scrs are the candidate prefetching
addresses. Once scrs is larger than the cacheline size and
smaller than the page size, the candidate addresses that are
not currently in the L1Dcache are prefetched. We conser-
vatively assume that all the load instructions might be the
victim’s instructions that are vulnerable. Therefore, the scale
tracker is applied to all the load instructions. Although all
loads are considered, the defense is performed when the
target addresses are calculated by addition and multiplica-
tion and the scales are larger than the cacheline size. This
implies that the prefetching is performed when the loads
are likely from phase 2 of the attacks instead of arbitrary

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 7

loads, and this can mitigate the potential cache pollution.
For implementation, since the scale tracker prefetches data
in the same page, the bitwidth for storing and calculating
fvar and scr can be small (Section 5.5).

1 load r0, 4(sp)

2 load r1, 0(r0)

3 load r2, arr_addr

4 load r3, 0x200

5 mul r4, r1, r3

6 add r5, r2, r4

7 load r6, 0(r5)

r4=secret×0x200

sc fva

NA1

NA1

arr_addr1

0x2001

NA0x200

NA0x200

r0

r1

r2

r3

r4

r5
r5=arr_addr+r4

r6=array[r4]

(a) (b)

r3=0x200 (imm)

r2=arr_addr (imm)
r1=secret
r0=secret’s address

Fig. 5. (a) A pseudo code example for accessing
array[secret×0x200], where arr addr is an immediate
number that represents the address of the first element in array.
(b) The scales (sc) and the fixed values (fva) in the access buffer,
where each value is set according to the instruction with the same color
and the values indicated by the arrows.

An example is shown in Figure 5. The pseudo code
in Figure 5(a) accesses array[secret×0x200] at line 7. For
Lines 1-2, the instructions load the secret’s address and the
secret from the memory to r0 and r1, respectively. Therefore,
the values of r0 and r1 are regarded as variables and fva of
them are NA. Lines 3-4 load the immediate numbers to r2
and r3, which makes the fva of r2 and r3 be arr addr and
0x200, respectively. Next, line 5 multiplies r1 (secret) and
r3 (0x200) and stores the result to r4. According to Table 3,
since r1’s fva is NA and r3’s fva is 0x200, the sc of r4 is
0x200×1, and fva of r4 is NA. For line 6, the r2 and r4 are
added to r5, which makes sc of r4 directly propagated to r5
since r2 has a valid fva. Finally, when the load of line 7 is
executed, the scale tracker will prefetch the data at (target
address)±scr5, which are arr addr+secret×0x200±0x200.
In this case, assume secret is 12 at this time, there are at least
2 more eviction cachelines in the cache, which can mislead
the attacker to get the wrong secret value 11 or 13.

4.3 Access Tracker
For phase 3, the attacker needs to time all the eviction
cachelines to get the access latencies. Therefore, Access
Tacker (AT) is proposed to interfere with phase 3 to further
mislead the attacker. The goal of the access tracker is to learn
the attacker’s access pattern in phase 3, and prefetch the
eviction cachelines before the attacker times them.

However, according to challenge C2, attackers may time
the eviction cachelines in a random order to bypass prefetch-
ers such as Stride prefetcher. This increases the difficulty
of learning the access patterns. It is found that in common
cases, the attacker’s memory accesses in phase 3 are only
associated with a few load instructions. This can help the
learning of the access patterns by recording the access
history of each load instruction separately.

For the access tracker, there is a set of access buffers,
each of which is associated with a load instruction and
records the target block addresses accessed by the associated
load. The access buffers can help the access tracker learn the
access patterns of the associated load instructions. For each
load, the access pattern is estimated as a stride access—an
arithmetic sequence with a constant difference, which is es-
timated as the minimum difference between block addresses
in the associated buffer.

InstAddr

DiffMin

Valid

① Buffer Allocation

② Entry Updating

③ DiffMin Updating

④ Data Prefetching

······
Buffer
Entries

Instruction Address 0x8008

①

②

③

④

①

②

Load 0x1000

······

Load 0x2800

Load 0x1C00

Load 0x1500

······

······

······

Instruction Address 0x8018

1

1

1

1

1

1

1

1

Buffer[n - 1]
···

···
1 0

1 0

0 xA 00 0 0x1500

0 xA1 00

0 xA2 00

0 xA3 00

···

···

1

1 0

1 0

1 0

0 xA4 00

0 x8 0 10 0x80181

Buffer[1]

···

1

0

0x1000

0x1F00

0x1600

0x2800

···

1

1

1

1

0x1C00

0 x6 0 0 0x300

0x8008

1

1

Buffer[0]

0 x1001 0

Cachelines ···

···
···
···
···

···

···

···

···

···

0x1000 0x1C00

Fig. 6. An example of the access buffer.

The microarchitecture of the access buffer is shown in
Figure 6. Each buffer maintains a register for storing the
instruction address InstAddr of the associated load. For each
entry of a buffer, the block address BlkAddr accessed by
the associated load is recorded. There is also a register in
each buffer, which stores the minimum difference DiffMin
between two block addresses among all the entries. Each
register or entry of an access buffer has a valid bit for
indicating if the data is valid or not. All valid bits are set
to 0 upon the reset of the buffer. Note that we discuss the
conceptual idea in this section. For implementation, we do
not need to store a complete block address in each entry
(Section 5.5).

Four stages are involved in the flow of the access tracker:
1 Buffer Allocation: When a load accesses the cache

each time, its instruction address (the value in the program
counter) is compared with the InstAddrs to find the asso-
ciated access buffer, which is then activated. If there is no
associated buffer, an empty buffer is allocated to this load.
If there is no empty nor associated buffer, one buffer is
selected by the least recently used (LRU) replacement policy
for allocation. For example, in Figure 6, when the load with
InstAddr 0x8008 accesses the cache, associated Buffer[0] is
activated. In contrast, when the load with InstAddr 0x8018
accesses the cache, no buffer is associated, so Buffer[1] is
selected to allocate this load by LRU policy.

2 Entry Updating: In the activated buffer, if the BlkAddr
of the accessed data is not recorded, a new entry is selected
to store this BlkAddr. If all the entries are occupied, LRU is
applied to find the entry for this BlkAddr.

3 DiffMin Updating: The access tracker calculates
DiffMin of a buffer when the buffer is activated and the
number of valid entries of this buffer surpasses a threshold
(such as 4). The number of entries of each buffer is set to be
small (such as 8) to reduce the hardware complexity. DiffMin
can be used to estimate the difference between each two
addresses to be accessed by the attacker in phase 3.

4 Data Prefetching: After the number of valid entries
in a buffer surpasses a threshold (such as 4), each time this
buffer is activated, candidate prefetching addresses are cal-
culated. If BlkAddr′ is the block address of the current load,
the candidate prefetching addresses are BlkAddr′± DiffMin.

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 8

Then, the access tracker checks if these addresses exist in
the activated buffer, and prefetches one of them that is not
in the activated buffer nor in the L1DCache. For example,
assuming the cacheline size is 256 bytes, in Figure 6, the col-
ored cachelines’ block addresses are recorded in the buffer
entries, where the cachelines and their corresponding block
addresses have the same color. When load with InstAddr
0x8008 accesses the cache, Buffer[0] is activated. The latest
block address 0x1C00 is stored in the buffer, and DiffMin
is updated to 0x300 as it is calculated by |0x1F00-0x1C00|.
At this moment, the access tracker predicts that the eviction
cachelines are 0x1C00 + 0x300×k, where k is an integer. The
red margins in Figure 6 indicate the eviction cachelines
that are not currently accessed. In this case, the candidate
addresses are 0x1C00±0x300. As 0x1C00+0x300 is already in
the buffer, 0x1C00-0x300 is finally prefetched by the access
tracker (indicated by the arrow near 4).

In this way, the access tracker can learn the access
patterns of the actively executed load, and prefetch the
data accordingly to mislead the attacker. We conservatively
assume that all the loads might be leveraged by the attacker,
so the access tracker is applied to all of them. The possibility
of associating the buffer with the attacker’s load can be
increased by increasing the number of the buffers. Note that
the access tracker (or the scale tracker) only prefetch one
cacheline for each load execution in order to reduce the risk
of incurring performance overhead and avoid additional
hardware complexity. Although all loads are considered, the
access tracker finally prefetches when a load is frequently
executed in a time interval, which is the access pattern of the
attack’s phase 3. Therefore, prefetching happens when the
loads are likely from the attacks instead of arbitrary loads,
and the potential cache pollution is mitigated.

4.4 Record Protector

The access tracker can defeat the side channel attacks by
prefetching the data that are predicted to be accessed by
the attackers in phase 3. However, in practice, two scenarios
(challenges C3 and C4) might bypass the access tracker.

• Challenge C3: In phase 3, between two eviction cacheline
accesses of the attacker’s load, there might be other
benign memory access instructions executed, which are
noise for the access tracker. The access buffer associated
with the attacker’s load can be occupied by a noisy
instruction. According to the access tracker’s policy, this
noisy instruction will initialize the buffer and evict the
attacker’s information. In this case, the access tracker may
fail to prefetch the eviction cachelines to defeat the attack.

• Challenge C4: In phase 3, if the attacker accesses the
non-eviction cachelines, the access tracker will calculate
wrong DiffMin. These accessed cachelines are also noise
for the access tracker. For example, the BlkAddrs stored in
the access buffers are 0x8000, 0x8200, 0x8400, and 0x8600,
which are all the eviction cachelines. The DiffMin is 0x200
in this case. However, once a non-eviction cacheline with
BlkAddr=0x8100 is accessed by the same load, DiffMinwill
be changed to 0x100. This can mislead the access tracker to
prefetch the cachelines that are not the eviction cachelines,
and the attacks can bypass the access tracker’s defense.

To tackle the above two challenges, Record Protector
(RP) is proposed, which can link the scale tracker and the
access tracker to increase the robustness of PREFENDER, as
shown in Fig 2. When a victim load accesses the cache,
assuming register r stores the target address, the scale
tracker will prefetch the data according to scr. Meanwhile,
the record protector will store scr and the block address
BlkAddrr of this access’s target address to the scale buffer.
Each time when the attacker’s load accesses the cachelines
for the timing measurement in phase 3, the block address
BlkAddr’ of this access is checked with all the sci and
BlkAddri pairs in the scale buffer, where i is the index of
the entry. If (BlkAddr’-BlkAddri)%sci=0, it is estimated that
this access is the access to the eviction cachelines. Therefore,
the associated access buffer is protected so that it cannot
be directly replaced by LRU, and this tackles challenge C3.
Meanwhile, upon protection, the prefetching is guided by
sci but not DiffMin, which can protect PREFENDER from
being affected by the non-eviction cacheline records in the
access buffer, and challenge C4 is tackled.

An example of the flow of the record protector is shown
in Figure 7, and the detailed policy of the record protector is
elaborated as follows, where 3 stages are involved.

Cachelines

0x2400

InstAddr

DiffMin

Valid

① Scale Recording

② Protection Status Updating

③ Protected Prefetching

Buffer
Entries

①

······

Load 0x2600

Load 0x2400

······

···

0

···

0x2600

0x2400

0

···

1

1

1

0

0

0x 8 00 0x200

0x8008

Buffer[0]

···

0

0x160

0x 100

0x400

···

1

1

0x1300

0x 200 0

0x1000

···

Scale Buffer

Load (r1)

······

Victim Instruction

Attacker Instruction

···

0x200

0x400

···

r0

r1

NA

NA

···

Calculation Buffer

sc fva

1

1

Buffer Protected Flag 0 1

Valid sc BlkAddr

 r1=0x400×i+0x200

 =0x1000

②

②

0x2600 ③

0x400

0x1000
1

Protected

Scale

0x2c00

InstAddr

DiffMin

Valid

Buffer
Entries

······

Load 0x2200

Load 0x2c00

······

···

1

···

0x2600

0x2400

0x2200

···

1

1

1

1

0x2c00

0x200

0x8008

Buffer[0]

Attacker Instruction

1

1

Buffer Protected Flag 1 0

0x2200 ③

0x400

0x1000
1

Protected

Scale

②

Cachelines

(a) (b)

Access Buffer

···

0

1

n-1

Access Buffer

Fig. 7. An example of the flow of the record protector. (The underlined
instructions access the eviction cachelines; Each red margin is at the
candidate address by the access tracker’s policy; Each red block is at
the candidate address by the record protector’s policy.)

1 Scale Recording: When the victim accesses the evic-
tion cacheline, the scale tracker uses the scale sc′ in the
calculation buffer for prefetching (Section 4.2). At the same
time, the record protector records sc′ and the block address
BlkAddr’ of the target address to the scale buffer, as shown
in step 1 of Figure 7(a). The records in the scale buffer
represent the pattern of the possible eviction cachelines.
They can guide the access tracker to avoid being affected
by noisy accesses, which is discussed in the later stages.

However, one pattern might be a subset of another
pattern. If so, to reduce the redundancy, only the pattern
with the larger scale is recorded. For example, in the step
1 of Figure 7(a), r1 is calculated by 0x400×i+0x200, and

the target address is 0x1000 for this time. In this case,
sc′ =0x400 and BlkAddr’=0x1000, so the pattern is S′ ={...
0x0c00, 0x1000, 0x1400, ...}. For Entry 1 of the scale buffer,

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 9

sc1 =0x100 and BlkAddr1=0x2000, so the pattern is S1 ={...
0x1f00, 0x2000, 0x2100, ...}. Since S′ ⊂ S1 (which means
sc′ > sc1), all the possible eviction cachelines in S′ are
also in S1. In this case, only S′ needs to be kept for
reducing redundancy, and Entry 1 is replaced by sc′ and
BlkAddr’. In detail, assuming the scale and the block address
related to the current load are sc′ and BlkAddr’, when
(BlkAddr’−BlkAddri)%min(sc′, sci) = 0 for Entry i of the
scale buffer, only if sc′ > sci, Entry i will be updated by sc′

and BlkAddr’.
2 Protection Status Updating: In phase 3, each time

when the attacker’s load accesses the cache, BlkAddr’ of this
load’s target address is checked with all the records (sci and
BlkAddri) in the scale buffer. If BlkAddr’ matches one of the
recorded patterns, which means (BlkAddr’-BlkAddri)%sci=0,
we say BlkAddr’ hits the scale buffer. When a cache access
hits the scale buffer, it is estimated that the load of this
access is the attacker’s load in phase 3. Therefore, upon
the hit, the hit sci and BlkAddri are copied to the protected
scale registers in the associated access buffer, and this asso-
ciated access buffer is marked as protected. With the record
protector, the LRU policy in the access tracker for access
buffer replacement is only applied to the unprotected access
buffers. By using the scale buffer to predict which load is
from the attacker, and protect its associated access buffer,
the access buffer will not be replaced by noisy loads. In this
way, challenge C3 is tackled.

For example, in the step 2 of Figure 7(a), load accesses
address 0x2400, which corresponds to an eviction cacheline.
Since it hits the scale buffer, the associated access buffer is
marked as protected by setting the “Buffer Protected Flag”
as 1. Scale 0x400 and block address 0x1000 are also copied
to the protected scale registers.

3 Protected Prefetching: Besides tackling challenge C3
by protecting the access buffers, challenge C4 can be tackled
by prefetching data according to the scales in the scale
buffer. Each time a load’s target block address BlkAddr’ is
stored into the access tracker, if it hits the scale buffer or
the protected scale, the access tracker will use the hit scale
schit to prefetch data, i.e., the access tracker’s candidate
prefetching addresses are BlkAddr’±schit. Otherwise, the
candidate prefetching addresses are calculated by the access
tracker’s policy in Section 4.3. So, the noisy accesses of the
attacker’s load have much lower effects on the defense.

An example is the step 3 of Figure 7(a). The load
accesses address 0x2400. Although DiffMin in the associated
buffer is 0x200, the prefetching is performed based on the
hit scale 0x400 in the scale buffer. As a result, one of the
candidate addresses 0x2400±0x400 not in the access buffer
is prefetched. If the hit scale buffer entry is replaced later so
that the BlkAddr’ no longer hits the scale buffer, the associ-
ated access buffer’s protected scale will be checked instead.
If there is a hit like the case in Figure 7(b), the prefetching
is still performed according to the hit scale 0x400. For a
protected access buffer, once the number of the prefetching
using the hit scale exceeds a threshold or the buffer stays
untouched for a time threshold, the access buffer is set back
to unprotected status, as shown in Figure 7(b).

In conclusion, the record protector can help the access
tracker tackle challenges C3 and C4 by protecting the ac-
cess buffers and performing prefetching based on the scale

tracker’s information, respectively. We still conservatively
assume that all the loads might be the victim’s and the
attacker’s instructions, so the record protector is applied
to all of them. For implementation, since the access buffer
stores the block addresses, the bitwidth for the modulus
calculation can be small enough to be practical (Section 5.5).

5 EVALUATION

5.1 Experimental Setup

In our experiments, gem5 simulator [37] is used, where
the baseline configuration contains a 2GHz x86 out-of-
order CPU with a 32KB L1Icache, a 64KB L1Dcache, and
a 2MB L2cache. There are 4 miss-status handling registers
(MSHRs), each of which can merge at most 20 requests
to the same line. For security analysis, we test differ-
ent Spectre attacks using Flush+Reload, Evict+Reload and
Prime+Probe. Challenges C1-C4 are involved based on these
attacks. For performance analysis, SPEC CPU 2006 and 2017
benchmark suites [38], [39] are evaluated. Based upon the
baseline, PREFENDER can include different basic prefetch-
ers, including PREFENDER only, PREFENDER with a Tagged
prefetcher [15], and with a Stride prefetcher [40]. Note that
the priority of PREFENDER’s prefetching is higher than basic
prefetchers for timely defense.

5.2 Security Evaluation

Different side channel attacks are used to evaluate the
security effectiveness of PREFENDER, and the results are
shown in Figure 8. We first evaluate without noisy memory
instructions and noisy accesses (i.e., without challenges C3
and C4), and the results are shown in Figure 8(a)-(c). For
Flush+Reload, without applying PREFENDER, the attacker
can infer the secret value by obtaining the only cache
hit when accessing the eviction cachelines of the array in
phase 3. When the Scale Tracker (ST) is applied, the scale
tracker is able to introduce additional misleading cache hits
on eviction cachelines, according to the calculation history.
Besides, by learning the attacker’s access pattern, the Access
Tracker (AT) successfully predicts the accesses of the phase
3, and confuses the attacker by introducing the cache hits.
When both the scale tracker and the access tracker are imple-
mented, their effects on cachelines are overlapped. Similar
results are also obtained when performing Evict+Reload
attack. For Prime+Probe, the attacker infers the secret by
the only cache miss. When the scale tracker is applied, more
eviction cachelines are prefetched in phase 2, which incurs
more cache misses. When the access tracker is applied, all
eviction cachelines are prefetched so that the attacker can
only obtain cache hits when accessing the array. This also
misleads the attacker. When both the scale tracker and the
access tracker are applied, only the effect of the access
tracker remains since the access tracker prefetches (phase
3) after the scale tracker (phase 2).

When there are noisy memory instructions during phase
3 (challenge C3), the access buffers of the access tracker
can be occupied by these accesses of the noisy instructions,
and applying the access tracker only may not defeat the
attack, as shown in Figure 8(d)-(f). However, when the
Record Protector (RP) is implemented, the access buffer

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 10

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

(a) Flush + Reload (C1 + C2)

(d) Flush + Reload (C1 + C2 + C3)

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

La
te

nc
y

(C
yc

le
)

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

(g) Flush + Reload (C1 + C2 + C4) (h) Evict + Reload (C1 + C2 + C4) (i) Prime + Probe (C1 + C2 + C4)

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

50 70 90 11065
0

200

400

Array Index

Secret

(j) Flush + Reload (C1 + C2 + C3 + C4) (k) Evict + Reload (C1 + C2 + C3 + C4) (l) Prime + Probe (C1 + C2 + C3 + C4)

La
te

nc
y

(C
yc

le
)

La
te

nc
y

(C
yc

le
)

(e) Evict + Reload (C1 + C2 + C3) (f) Prime + Probe (C1 + C2 + C3)

(b) Evict + Reload (C1 + C2) (c) Prime + Probe (C1 + C2)

Hit Threshold Base Prefender-ST

Cache
Hit

Cache
Miss

Cache
Hit

Cache
Miss

Cache
Hit

Cache
Miss

Cache
Hit

Cache
Miss

Prefender-AT Prefender-ST+AT PrefenderPrefender-AT+RP
La

te
nc

y
(C

yc
le

)

Fig. 8. The results of different attack methods with different challenges. (“PREFENDER” means that the scale tracker, the access tracker, and the
record protector are all applied. Note that for PREFENDER-ST, the latency results of array indices 64-66 are the same in (a)-(c).)

540 560 580
0

40

80

120

Time (µs)
7640 7660 7680

0

40

80

120

Time (µs)
320 380 440

0

40

80

120

Time (µs)

of

 P
re

fe
tc

he
s

(a) Flush + Reload (C1 + C2) (b) Evict + Reload (C1 + C2) (c) Prime + Probe (C1 + C2)

(d) Flush + Reload (C1 + C2 + C3 + C4) (e) Evict + Reload (C1 + C2 + C3 + C4) (f) Prime + Probe (C1 + C2 + C3 + C4)

500 520 540 560 580 600

0
20
40
60

Time (µs)
10700 10740 10780 10820

0
20
40
60

Time (µs)
200 260 320 380 440 500 560

0
20
40
60

Time (µs)

of

 P
re

fe
tc

he
s

ST AT RP

Fig. 9. The number of the prefetches performed under different attack methods with different challenges. (PREFENDER-ST+AT is applied in (a)-(c),
and PREFENDER with the scale tracker, the access tracker, and the record protector is applied in (d)-(f). Note that the prefetches of the record
protector refer to those of the access tracker guided by the record protector.)

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 11

TABLE 4
Performance improvement of SPEC CPU 2006 benchmarks without the record protector. (†The basic prefetcher.)

Column ID 1 2 3 4 5 6 7 8 9 10 11
Prefetcher PREFENDER-ST+AT Tagged PREFENDER-ST+AT (†Tagged) Stride PREFENDER-ST+AT (†Stride)

of Acc. Tra. Buf. 16 32 64 - 16 32 64 - 16 32 64

Be
nc

hm
ar

k

400.perlbench 0.677% 0.679% 1.110% 0.241% 0.427% 0.588% 0.324% 0.389% 1.117% 1.065% 1.536%
401.bzip2 3.314% 3.346% 3.407% 4.428% 5.717% 5.728% 5.732% 1.777% 3.922% 3.959% 4.052%
429.mcf 6.421% 8.562% 8.585% 8.636% 12.069% 12.228% 12.237% 13.233% 14.803% 17.684% 17.653%

445.gobmk -0.025% -0.106% -0.122% 1.318% 1.164% 1.103% 1.102% 0.363% 0.433% 0.379% 0.347%
456.hmmer 0.830% 0.862% 0.891% 10.115% 10.128% 10.152% 10.158% 7.119% 6.417% 6.474% 6.512%
458.sjeng -0.354% -0.355% -0.366% -0.437% -0.613% -0.615% -0.609% -0.016% -0.300% -0.303% -0.322%

462.libquantum 6.533% 6.533% 6.532% 4.852% 6.501% 6.501% 6.501% 7.555% 9.768% 9.770% 9.773%
464.h264ref 0.269% 0.256% 0.408% 1.762% 1.707% 1.521% 1.804% 0.934% 0.724% 0.993% 0.793%

471.omnetpp -0.006% -0.006% -0.011% 0.112% 0.109% 0.109% 0.109% 0.229% 0.213% 0.213% 0.211%
473.astar 0.033% 0.398% -0.132% 0.183% 0.212% 0.415% -0.176% 0.032% 0.059% 0.474% -0.021%

483.xalancbmk 0.702% 2.840% 3.941% 11.576% 11.577% 11.952% 10.592% 2.137% 2.771% 4.952% 5.683%
999.specrand 0.000% 0.000% 0.000% 0.001% 0.001% 0.001% 0.001% 0.000% 0.000% 0.000% 0.000%

Avg. 1.533% 1.918% 2.020% 3.566% 4.083% 4.140% 3.981% 2.813% 3.327% 3.805% 3.851%

TABLE 5
Performance improvement of SPEC CPU 2006 benchmarks with the record protector. (†The basic prefetcher.)

Column ID 1 2 3 4 5 6 7 8 9 10 11
Prefetcher PREFENDER Tagged PREFENDER (†Tagged) Stride PREFENDER (†Stride)

of Acc. Tra. Buf. 16 32 64 - 16 32 64 - 16 32 64

Be
nc

hm
ar

k

400.perlbench 0.584% 0.562% 0.585% 0.241% 0.001% 0.524% 0.545% 0.389% 1.115% 1.118% 1.116%
401.bzip2 3.129% 3.192% 3.251% 4.428% 5.621% 5.646% 5.667% 1.777% 3.828% 3.916% 3.958%
429.mcf 4.347% 5.494% 5.497% 8.636% 9.335% 9.557% 9.540% 13.233% 12.114% 12.755% 12.755%

445.gobmk -0.030% -0.066% -0.084% 1.318% 1.189% 1.171% 1.163% 0.363% 0.386% 0.347% 0.335%
456.hmmer 0.830% 0.861% 0.891% 10.115% 10.128% 10.149% 10.162% 7.119% 6.431% 6.467% 6.529%
458.sjeng -0.411% -0.428% -0.422% -0.437% -0.649% -0.660% -0.687% -0.016% -0.324% -0.337% -0.373%

462.libquantum 6.516% 6.518% 6.521% 4.852% 6.502% 6.502% 6.502% 7.555% 9.781% 9.782% 9.782%
464.h264ref 0.346% 0.300% 0.346% 1.762% 1.739% 1.806% 1.800% 0.934% 0.899% 0.812% 0.843%

471.omnetpp 0.025% 0.047% 0.058% 0.112% 0.104% 0.112% 0.106% 0.229% 0.231% 0.225% 0.230%
473.astar 0.029% 0.308% -0.139% 0.183% 0.208% 0.355% -0.182% 0.032% 0.054% 0.385% -0.027%

483.xalancbmk 0.860% 2.372% 3.822% 11.576% 11.533% 11.704% 10.624% 2.137% 3.123% 4.644% 5.628%
999.specrand 0.000% 0.000% 0.000% 0.001% 0.001% 0.001% 0.001% 0.000% 0.000% 0.000% 0.000%

Avg. 1.352% 1.597% 1.694% 3.566% 3.809% 3.905% 3.770% 2.813% 3.136% 3.343% 3.398%

TABLE 6
Performance improvement of SPEC CPU 2017 benchmarks. (†The basic prefetcher.)

Column ID 1 (ST+AT) 2 3 4 (ST+AT) 5 6 7 (ST+AT) 8
Prefetcher PREFENDER Tagged PREFENDER (†Tagged) Stride PREFENDER (†Stride)

of Acc. Tra. Buf. 32 32 - 32 32 - 32 32

Be
nc

hm
ar

k

507.cactuBSSN r 0.917% 0.874% 12.256% 12.752% 12.711% 10.707% 11.672% 11.557%
526.blender r 0.015% 0.015% 0.356% 0.302% 0.302% 0.120% 0.133% 0.133%

531.deepsjeng r -0.396% -0.379% -0.121% -0.525% -0.513% 0.000% -0.380% -0.369%
538.imagick r 5.664% 5.664% 4.240% 6.389% 6.389% 0.561% 6.292% 6.292%

541.leela r -0.072% -0.249% 0.164% 0.257% 0.120% 0.145% 0.187% 0.073%
557.xz r 0.243% 0.332% 4.015% 4.107% 4.104% 1.637% 1.873% 1.892%

510.parest r 39.738% 50.291% 44.043% 49.822% 54.617% 0.700% 35.586% 46.775%
548.exchange2 r 0.000% -0.006% 0.000% 0.000% 0.000% 0.011% -0.004% 0.015%

554.roms r 0.000% 0.000% 30.898% 30.898% 30.898% 15.797% 15.797% 15.797%
Avg. 5.123% 6.282% 10.650% 11.556% 12.070% 3.298% 7.906% 9.129%

associated with the attacker’s load is successfully identified
and protected, so the access tracker is able to prefetch the
eviction cachelines and mislead the attacker again. Similarly,
without the record protector, when there are noisy accesses
by the attacker’s load in phase 3 (challenge C4), the value
of DiffMin can be affected, and the access tracker may not
be able to prefetch the eviction cachelines, as shown in
Figure 8(g)-(i). In contrast, when the record protector is
applied, the prefetching is guided by the scale buffer that
contains the possible eviction cachelines from the victim, so
the access tracker can again correctly prefetch the eviction
cachelines to mislead the attacker.

Combining all the challenges and all the designs, the se-
curity can be illustrated in Figure 8(j)-(l). Without applying
PREFENDER, the attacker can infer the secret with the only
one cache hit (or miss). With PREFENDER, even though all
the challenges are involved, multiple cache hits (or misses)
are introduced, and the attack is defeated.

We further analyze the insights of the defense, which
are shown in Figure 9, where the x-axis represents the
execution time. We only show the part where the attack
is performed. For Figure 9(a)-(c), challenges C1 and C2 are
involved, and PREFENDER-ST+AT is applied. One can notice
that the scale tracker prefetches a small amount of data
shown in Figure 9(a)-(c), which corresponds to the data at
array indices 64 and 66 of the green curves in Figure 8(a)-(c).
After this, the access tracker prefetches more data shown in
Figure 9(a)-(c), which is also shown by the orange curves
in Figure 8(a)-(c). For Figure 9(d)-(f), all challenges are
involved, and PREFENDER with all three designs is applied.
It is indicated that the scale tracker still prefetches several
data. After this, with the guidance of the record protector,
the access tracker successfully prefetches the data even
with the noisy instructions and accesses. The corresponding
results are shown in Figure 8(j)-(l). This further shows the
mechanism of the defense.

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 12

In summary, by successfully defeating the attacks in the
threat model, PREFENDER can enforce the security as the
same as the previous work [8], [9], [23], [24].

5.3 Performance Evaluation
While enforcing security, PREFENDER can also maintain or
even improve performance. When the record protector is
not implemented, the performance results of SPEC CPU
2006 benchmarks are shown in Table 4. The results show
the improvement percentile compared with the baseline
that has no prefetchers. The main results are Columns 2,
6 and 10, where 32 access buffers are implemented. When
PREFENDER-ST+AT is implemented (Column 2), the per-
formance improvement is about 2% on average, with the
security enforcement. For Columns 6 and 10 where the con-
ventional prefetchers are applied, PREFENDER-ST+AT can
further improve the performance compared with Columns
4 and 8 where no PREFENDER is implemented, respectively.
This shows PREFENDER’s capability for maintaining or even
improving the performance.

When the record protector is implemented, the perfor-
mance results of SPEC CPU 2006 benchmarks are shown
in Table 5, where the performance distributions are similar
as Table 4. With the record protector, PREFENDER also im-
proves the performance on average, no matter if there are
basic prefetchers or not. At the same time, not only is the
security enforced, but also the robustness of PREFENDER is
greatly improved by the record protector.

While the performance is improved by PREFENDER on
average, the impacts on different benchmarks vary. For
example, 401.bzip2, 429.mcf and 462.libquantum have the
most speedup with PREFENDER. In contrast, there is al-
most no performance impact on 999.specrand. For 445.gobmk,
458.sjeng and 471.omnetpp, their performance has a slight
drop with PREFENDER. The effect of the number of the
access buffers is also evaluated and shown in Tables 4 and
5. The results indicate that more access buffers usually help
the performance. Besides, if the buffers are more than 32,
marginal improvements are obtained.

Besides, the results of the cases newly presented in SPEC
CPU 2017 benchmarks are shown in Table 6. Similar to SPEC
CPU 2006, PREFENDER also has performance improvement,
both with and without the record protector. At the same
time, PREFENDER can further increase the performance
based on the basic prefetchers. Note that for some bench-
marks such as 510.parest r, the performance improvement
is relatively large. This is because the data prefetched by
PREFENDER can greatly help reduce the cache miss rate.
For example, the cache miss rate and the cache misses’
access latency of 510.parest r in Column 2 of Table 6 (in the
revision letter) are 50.26% and 55.99% less than that without
PREFENDER, respectively.

5.4 Analysis of Cache Miss and Defense
Prefetching can impact the cache miss rate and latency. We
evaluated the total latency of all cache misses of each bench-
mark, which is shown in Figure 10. Each result is normalized
to the baseline. In Figure 10, “PREFENDER-ST+AT” have the
same configuration as Columns 2, 6, 10 in Table 4, where
the record protector is not applied. “PREFENDER” has the

same configuration as Columns 2, 6, 10 in Table 5 with the
scale tracker, the access tracker, and the record protector. It is
indicated that the total latencies of cache misses are reduced
on average when PREFENDER is implemented. For a few
cases, the latency becomes higher than the baseline, which
leads to a slight performance drop, such as 458.sjeng. Some
cases have similar miss latencies before and after applying
PREFENDER, but the performance is still improved, such as
400.perlbench and 429.mcf.

We further evaluated the number of the prefetches per-
formed by the scale tracker, the access tracker, and the
record protector of PREFENDER. The results are shown in
Figure 11. Note that the access tracker prefetches the most
data, and the record protector guides the access tracker to
prefetch more data than the scale tracker. The reason is that
the scale tracker performs one prefetch when a target ad-
dress of a load is calculated by addition and multiplication,
and the scale is larger than the cacheline size. This happens
less frequently than triggering the record protector, which
helps the access tracker prefetch each time a scale from the
scale tracker is recorded and a load’s target address hits
the scale history. For the access tracker, the requirement for
prefetching is the easiest to be satisfied since it only needs a
load to be frequently executed.

Finally, the number of the protected access buffers dur-
ing the execution is tested in Figure 12, which indicates
that different benchmarks have different patterns on the
protected buffer numbers. For 400.perlbench, 458.sjeng, and
464.h264ref, most of the buffers are protected during the
execution. In contrast, 456.hmmer, 462.libquantum, 473.astar,
and 999.specrand have no protected buffer. For other bench-
marks, the number of the protected buffers varies. These
results indicate that different functionality of the program
can affect the behaviors of the record protector.

5.5 Hardware Resource Consumption Analysis

We briefly analyze the upper bound of the hardware re-
source consumption. For the SRAM size of the scale tracker,
the prefetching is performed within one page, so 16 bits are
enough for the values in the calculation buffers even with
a page size of 64KB. For each register, there are two values
associated, so the scale tracker needs hundreds of bytes in
total for dozens of registers. For the datapath of the scale
tracker, an adder, a multiplier and a comparator are used,
which are also 16-bit.

For the SRAM size of the access tracker, there are 32
access buffers, each of which has 8 entries. Even if each
value of the buffer is 64-bit, only <3KB SRAMs are required.
For the datapath of the access tracker, since the access
tracker predicts and prefetches the eviction cachelines, 20
bits are enough for calculating the DiffMin even when
L1Dcache is as large as 1MB. Several 20-bit comparators and
20-bit adders are used for each access buffer. The hardware
consumption is also reasonable.

For the SRAM size of the record protector, the scale
buffer has 8 entries in the experiments, with each entry
16(sc)+64(BlkAddr)= 80 bits. For each access buffer, the
record protector requires another 80-bit register for the scale
history. Therefore, 400 bytes are needed. For the datapath of
the record protector, a 2-way associative L1Dcache is 64KB,

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 13

4 0 0 . p e r l b e n c h 4 0 1 . b z i p 2 4 2 9 . m c f 4 4 5 . g o b m k 4 5 6 . h m m e r 4 5 8 . s j e n g 4 6 2 . l i b q u a n t u m 4 6 4 . h 2 6 4 r e f 4 7 1 . o m n e t p p 4 7 3 . a s t a r 4 8 3 . x a l a n c b m k 9 9 9 . s p e c r a n d A v g .
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

No
rm

aliz
ed

Mi
ss

La
ten

cy S t r i d e
 P r e f e n d e r - S T + A T (S t r i d e)
 P r e f e n d e r (S t r i d e)

 T a g g e d
 P r e f e n d e r - S T + A T (T a g g e d)
 P r e f e n d e r (T a g g e d)

 B a s e l i n e
 P r e f e n d e r - S T + A T
 P r e f e n d e r

Fig. 10. The normalized total latency of all cache misses of L1Dcache.

4 0 0 . p e r l b e n c h 4 0 1 . b z i p 2 4 2 9 . m c f 4 4 5 . g o b m k 4 5 6 . h m m e r 4 5 8 . s j e n g 4 6 2 . l i b q u a n t u m 4 6 4 . h 2 6 4 r e f 4 7 1 . o m n e t p p 4 7 3 . a s t a r 4 8 3 . x a l a n c b m k 9 9 9 . s p e c r a n d A v g .
1 0 1

1 0 3

1 0 5

1 0 7

 S T (S t r i d e)
 A T (S t r i d e)
 R P (S t r i d e)

 S T (T a g g e d)
 A T (T a g g e d)
 R P (T a g g e d)

o
f P

ref
etc

hes
 (L

og1
0)

 S T
 A T
 R P

Fig. 11. The number of the prefetches. (The prefetches of the record protector refer to those of the access tracker guided by the record protector.)

0
5

1 0
1 5
2 0
2 5
3 0
3 5

1 0 0 %2 5 %0 %

 4 5 6 . h m m e r ,
 4 6 2 . l i b q u a n t u m ,
 4 7 3 . a s t a r ,
 9 9 9 . s p e c r a n d

 4 5 8 . s j e n g
 4 6 4 . h 2 6 4 r e f
 4 7 1 . o m n e t p p
 4 8 3 . x a l a n c b m k

o
f T

he
Pro

tec
ted

 Bu
ffe

rs

E x e c u t i o n P r o g r e s s

 4 0 0 . p e r l b e n c h
 4 0 1 . b z i p 2
 4 2 9 . m c f
 4 4 5 . g o b m k

7 5 %5 0 %
Fig. 12. The number of the protected buffers during the execution. (The
configurations are the same as that of Column 2 in Table 5.)

with each cacheline of 64 bytes, so 9 bits are used for the
set index of the cache. Since the target of the prefetching is
the cachelines, we only use the set index (the address of the
cache entries) to calculate the modules, and several hard-
ware modules of 9-bit modulus are needed. According to
the synthesis results from Synopsys Design Compiler with
ASAP 7nm library [41], the modulus only needs 2 cycles
for calculation with 9-bit bandwidth, which is much quicker
than memory access. Since the record protector only works
upon the memory access of a load, the modulus calculation
latency can be ignored through parallel calculation.

In summary, the hardware consumption is reasonable
when PREFENDER is implemented in a modern 64-bit pro-
cessor.

6 CONCLUSION

In this work, a secure prefetcher named PREFENDER is
proposed, which can defeat cache side channel attacks
while maintaining or even improving performance. In
PREFENDER, Scale Tracker (ST), Access Tracker (AT), and
Record Protector (RP) are designed to predict the eviction
cachelines according to the victim’s memory access during
phase 2, predict the attacker’s access patterns during phase
3, and increase the robustness, respectively. The security
is increased by prefetching the eviction cachelines that
can confuse the attacker. Experiments on Flush+Reload,
Evict+Reload, and Prime+Probe prove the effectiveness and
robustness of our defense. Besides, the average performance
is also increased by the accurate prediction, according to the
evaluations on SPEC CPU 2006 and 2017 benchmarks.

REFERENCES

[1] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel.” IACR Cryptology ePrint Archive, vol. 2002, no. 169, pp.
1–23, 2002.

[2] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low
noise, l3 cache side-channel attack,” USENIX Security Symposium,
pp. 719–732, 2014.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre
attacks: Exploiting speculative execution,” IEEE Symposium on
Security and Privacy, pp. 1–19, 2019.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Read-
ing kernel memory from user space,” USENIX Security Symposium,
pp. 973–990, 2018.

[5] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic
evaluation of transient execution attacks and defenses,” USENIX
Security Symposium, pp. 249–266, 2019.

[6] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of aes,” Cryptographers’ track at the RSA
conference, pp. 1–20, 2006.

[7] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative
execution processors,” IEEE/ACM International Symposium on Mi-
croarchitecture, pp. 974–987, 2018.

[8] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional
speculation: An effective approach to safeguard out-of-order ex-
ecution against spectre attacks,” IEEE International Symposium on
High Performance Computer Architecture, pp. 264–276, 2019.

[9] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas, “InvisiSpec: Making Speculative Execution Invisible
in the Cache Hierarchy,” IEEE/ACM International Symposium on
Microarchitecture, pp. 428–441, 2018.

[10] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and
G. Venkataramani, “Defeating cache timing channels with hard-
ware prefetchers,” IEEE Design & Test, vol. 38, no. 3, pp. 7–14,
2021.

[11] H. Fang, M. Doroslovački, and G. Venkataramani, “Reuse-trap:
re-purposing cache reuse distance to defend against side channel
leakage,” ACM/IEEE Design Automation Conference, pp. 1–6, 2020.

[12] A. Fuchs and R. B. Lee, “Disruptive prefetching: impact on side-
channel attacks and cache designs,” ACM International Systems and
Storage Conference, pp. 1–12, 2015.

[13] B. Panda, “Fooling the Sense of Cross-Core Last-Level Cache Evic-
tion Based Attacker by Prefetching Common Sense,” International
Conference on Parallel Architectures and Compilation Techniques, pp.
138–150, 2019.

[14] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” USENIX Secu-
rity Symposium, pp. 897–912, 2015.

[15] A. Smith, “Sequential Program Prefetching in Memory Hierar-
chies,” Computer, vol. 11, no. 12, pp. 7–21, 1978.

IEEE TRANSACTION ON COMPUTERS, VOL. 73, NO. 6, JUNE 2024 14

[16] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme
to reduce data access penalty,” ACM/IEEE conference on Supercom-
puting, pp. 176–186, 1991.

[17] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency
of hardware prefetchers,” IEEE International Symposium on High
Performance Computer Architecture, pp. 63–74, 2007.

[18] D. Joseph and D. Grunwald, “Prefetching using markov predic-
tors,” ACM/IEEE International Symposium on Computer Architecture,
pp. 252–263, 1997.

[19] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-
block correlating prefetchers,” ACM/IEEE International Symposium
on Computer Architecture, pp. 144–154, 2001.

[20] Z. He and R. B. Lee, “How Secure is Your Cache against Side-
Channel Attacks?” IEEE/ACM International Symposium on Microar-
chitecture, p. 341–353, 2017.

[21] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovaă?Ki, and
G. Venkataramani, “PrODACT: Prefetch-Obfuscator to Defend
Against Cache Timing Channels,” International Journal of Parallel
Programming, vol. 47, no. 4, p. 571–594, 2019.

[22] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,”
IEEE/ACM International Symposium on Microarchitecture, pp. 572–
586, 2019.

[23] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu,
“Specshield: Shielding speculative data from microarchitectural
covert channels,” International Conference on Parallel Architectures
and Compilation Techniques, pp. 151–164, 2019.

[24] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh, “Safespec: Banishing the
spectre of a meltdown with leakage-free speculation,” ACM/IEEE
Design Automation Conference, pp. 1–6, 2019.

[25] S. Ainsworth and T. M. Jones, “Muontrap: Preventing cross-
domain spectre-like attacks by capturing speculative state,”
ACM/IEEE International Symposium on Computer Architecture, pp.
132–144, 2020.

[26] T. Solanki and B. Panda, “SpecPref: High Performing Speculative
Attacks Resilient Hardware Prefetchers,” IEEE International Sym-
posium on Hardware Oriented Security and Trust (HOST), pp. 57–60,
2022.

[27] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” IEEE international symposium on high perfor-
mance computer architecture (HPCA), pp. 406–418, 2016.

[28] T. Kim, M. Peinado, and G. Mainar-Ruiz,
“{STEALTHMEM}:{System-Level} protection against {Cache-
Based} side channel attacks in the cloud,” USENIX Security
Symposium, pp. 189–204, 2012.

[29] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks
via encrypted-address and remapping,” IEEE/ACM International
Symposium on Microarchitecture, pp. 775–787, 2018.

[30] Z. Wang and R. B. Lee, “New cache designs for thwarting soft-
ware cache-based side channel attacks,” ACM/IEEE International
symposium on Computer architecture, pp. 494–505, 2007.

[31] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (sharp): Defending against cache-
based side channel attacks,” ACM/IEEE International Symposium on
Computer Architecture, pp. 347–360, 2017.

[32] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” International Cryptology
Conference, pp. 104–113, 1996.

[33] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.
[34] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,

“Spectre Returns! Speculation Attacks using the Return Stack
Buffer,” USENIX Workshop on Offensive Technologies, 2018.

[35] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU Register State
using Microarchitectural Side-Channels,” arXiv preprint, 2018.

[36] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Fore-
shadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution,” USENIX Security Symposium,
pp. 991–1008, 2018.

[37] The gem5 Simulator, http://www.gem5.org/Main Page.
[38] SPEC CPU 2006 Benchmark, https://www.spec.org/cpu2006/.
[39] SPEC CPU 2017 Benchmark, https://www.spec.org/cpu2017/.

[40] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme
to reduce data access penalty,” ACM/IEEE Conference on Supercom-
puting, pp. 176–186, 1991.

[41] ASAP 7nm Predictive PDK, http://asap.asu.edu/asap/, 2016.

Luyi Li Luyi Li received his B.S. degree in
VLSI Design and System Integration at Nan-
jing University, China. His research interests fo-
cus on computer architecture, hardware security,
domain-specific acceleration, etc. He is currently
a PhD student in the Department of Computer
Science and Engineering at University of Cali-
fornia, San Diego.

Jiayi Huang (Member, IEEE) received the BEng
degree in information and communication en-
gineering from Zhejiang University, China, in
2014, and the PhD degree in computer engi-
neering from Texas A&M University, in 2020.
He is currently an assistant professor at the
Hong Kong University of Science and Technol-
ogy (Guangzhou). His research interests include
computer architecture, computer systems, and
security. He is a member of the ACM and the
IEEE Computer Society.

Lang Feng Lang Feng received his B.E. degree
in electronic science and technology (microelec-
tronic technology) from University of Electronic
Science and Technology of China, Chengdu,
China, in 2016, and his Ph.D. degree in com-
puter engineering from Texas A&M University,
College Station, in 2020. In Nov. 2020, he joined
the School of Electronic Science and Engineer-
ing of Nanjing University, where he is an asso-
ciate research fellow. His research interests are
computer architecture, security, etc.

Zhongfeng Wang Zhongfeng Wang (Fellow,
IEEE) received both B.E. and M.S. degrees
from Tsinghua University. He obtained the Ph.D.
degree from the University of Minnesota, Min-
neapolis, in 2000. He has been working for
Nanjing University, China, as a Distinguished
Professor since 2016. Previously he worked for
Broadcom Corporation, California, from 2007 to
2016 as a leading VLSI architect. Before that, he
worked for Oregon State University and National
Semiconductor Corporation.

Dr. Wang is a world-recognized expert on Low-Power High-Speed
VLSI Design for Signal Processing Systems. He has published over
200 technical papers with multiple best paper awards received from the
IEEE technical societies. In the current record, he has had many papers
ranking among top 25 most (annually) downloaded manuscripts in IEEE
Trans. on VLSI Systems. In the past, he has served as Associate Editor
for IEEE Trans. on TCAS-I, T-CAS-II, and T-VLSI for many terms.

http://www.gem5.org/Main_Page
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
http://asap.asu.edu/asap/

	Introduction
	Background and Threat Model
	Cache Side Channel Attacks
	Prefetching
	Threat Model

	Related Work
	Cache Side Channel Attacks
	Microarchitectural Defenses

	Prefender Design
	Overview
	Scale Tacker
	Access Tracker
	Record Protector

	Evaluation
	Experimental Setup
	Security Evaluation
	Performance Evaluation
	Analysis of Cache Miss and Defense
	Hardware Resource Consumption Analysis

	Conclusion
	References
	Biographies
	Luyi Li
	Jiayi Huang
	Lang Feng
	Zhongfeng Wang

