
IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021 1

Computing En-Route for Near-Data Processing
Jiayi Huang, Member, IEEE, Pritam Majumder, Sungkeun Kim, Troy Fulton, Ramprakash Reddy Puli,

Ki Hwan Yum, Member, IEEE, and Eun Jung Kim, Member, IEEE

Abstract—The data explosion and faster data analysis demand have spawned emerging applications that operate over myriads of
data and exhibit large memory footprints with low data reuse rate. Such characteristics lead to enormous data movements across the
memory hierarchy and pose significant pressure on modern communication fabrics and memory subsystems. To mitigate the worsening
gap between high processor computation density and deficient memory bandwidth, memory networks and near-data processing
techniques are proposed to keep improving system performance and energy efficiency. In this work, we propose Active-Routing, an
in-network near-data processing architecture for data-flow execution, which enables computation en-route by exploiting patterns of
aggregation over intermediate results. The proposed architecture leverages the massive memory cube- and vault-level parallelism as
well as network concurrency to optimize the aggregation operations along a dynamically built Active-Routing Tree. It also introduces
page granular computation offloading to amortize the offloading overhead and improve the throughput. Compared to the
state-of-the-art processing-in-memory architecture, the evaluations show that the baseline Active-Routing can achieve up to 7×
speedup with an average of 60% performance improvement, and reduce the energy-delay product by 80% across various benchmarks.
Further optimizations with vault-level parallelism and page granular offloading can achieve an extra order of magnitude improvement.

Index Terms—memory network; data-flow; in-network computing; near-data processing; processing-in-memory.

F

1 INTRODUCTION

THE amount of data generated has been exploding due to
the improvement of technology and advent of numer-

ous network connected devices. This has led to an increasing
demand for faster data analysis to extract values from
these humongous amounts of data. Thus, data-intensive
workloads show very large memory footprints and low data
reuse rate. These applications, ranging from machine learn-
ing to graph processing [1], [2], have simple computations
that operate over myriads of data. Such simple computa-
tions in compute kernels and the large amounts of data to be
processed trigger considerable data movements across the
memory hierarchy. Consequently, modern communication
fabrics and memory subsystems face enormous challenges.
Moreover, due to the gap between dense CPU computa-
tion capability and deficient data supply from memory,
computer systems fail to achieve their peak computational
power. Thus, it is imperative to drive architectural break-
throughs for reducing data movement to achieve substantial
improvement of system performance and energy efficiency.

Recently, tremendous research efforts have been targeted
for designing data-centric computer systems. To keep up
with the increasing computation power, new memory tech-

• Jiayi Huang is with the Department of Electrical and Computer Engineer-
ing, University of California, Santa Barbara, CA 93106 USA.
E-mail: jyhuang@ucsb.edu.

• Pritam Majumder, Sungkeun Kim, Ki Hwan Yum and Eun Jung Kim are
with the Department of Computer Science and Engineering, Texas A&M
University, College Station, TX 77845 USA.
E-mail: {pritam2309,ksungkeun84,yum,ejkim}@cse.tamu.edu.

• Troy Fulton is with Aspen Insights, Fort Worth, TX 76107 USA.
E-mail: troy.fulton@aspeninsights.

• Ramprakash Reddy Puli is with the NVIDIA, Santa Clara, CA 95051
USA. E-mail: rpluli@nvidia.com.

Manuscript received 18 Aug. 2020; revised 7 Jan. 2021; accepted 7 Feb. 2021.
Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Jiayi Huang.)
Recommended for acceptance by L. Chen and Z. Lu.
Digital Object Identifier no. 10.1109/TC.2021.3063378

nologies such as Hybrid Memory Cube (HMC) [3] and
High Bandwidth Memory (HBM) [4] provide higher band-
width by utilizing 3D stacking [5]. Additionally, the tradi-
tional processor-centric design is not cost-effective to scale
memory capacity and is suboptimal for system bandwidth
provision [6]. Therefore, memory-centric designs have been
proposed to connect memory modules to form a memory
network as a large memory pool and to fully utilize proces-
sor and memory bandwidth [6], [7]. These design adoptions
may mitigate the data response bottleneck, but still require
a significant amount of data movement due to the heavy
pressure on the communication fabrics.

Prior research has proposed various optimizations to
reduce data movement across the memory hierarchy for
better system efficiency. Near-data processing (NDP), as
a promising computation paradigm, has propelled archi-
tecture advances to move computations near data-resident
locations, such as cache [8] and memory [9], [10], [11].
Processing-in-memory (PIM) is an NDP alternative that
introduces computation in memory for data processing.
Recent studies [12], [13] have proposed to integrate PIM
within modern processors in a seamless fashion by ex-
tending instruction sets for computation offloading. These
mechanisms are most effective in cases of irregular mem-
ory accesses and atomic write operations. However, they
are suboptimal when performing simple tasks over large
amounts of data, such as dot product. Extra overhead is
incurred by fetching part of the operands across the memory
network. Moreover, general purpose PIM typically incurs a
large CPU-memory bandwidth overhead for computation
offloading through extended instructions.

Previous research has advocated to provide computation
power as well as routing functionalities in communication
fabrics [14], [15], [16]. The NYU Ultracomputer augmented
routers with adders to combine fetch-and-update requests
for the same shared variable [17]. To accelerate MPI collec-

Author’s version. 0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

13%

31%55%

normal request

PIM request

normal response

PIM response

(a) sgemm

21%

28%

51%

(b) mac

18%

30%
52%

(c) reduce

Fig. 1: CPU-mem bandwidth usage breakdown in Active-Routing [21].

tives, Panda [18] and Chen et al. [19] proposed reduction
units in the network interface to optimize aggregation.
These techniques only accelerate pure reduction computa-
tions and fail to optimize operations like dot product, thereby
requiring enormous data movements across the memory
hierarchy to calculate the intermediate results before re-
duction. Recently, MAERI [20] was designed for data-flow
computations in deep neural network accelerators to im-
prove efficiency, which does not fit for general workloads.
The multiply operations require data to be brought to local
SRAM and are computed only at leaf nodes in the tree-based
network topology. These in-network computing solutions
are limited in flexibility because of the static reduction
tree/ring that is tied to the network topology. In this work,
we reattempt the communication fabric to facilitate more
diverse operations and to build topology-oblivious dynamic
routing tree for reduction acceleration.

Building upon previous study to further reduce data
movement, we have proposed an in-network NDP archi-
tecture, Active-Routing to enable en-route computing [21].
Compute kernels are mapped to the memory network for
data-flow execution by leveraging the aggregation pattern
over intermediate results of arithmetic operators. It sched-
ules computations at routers attached to memory in order to
exploit the massive memory parallelism and bandwidth. It
also builds topology-oblivious Active-Routing trees dynam-
ically and takes good use of the network concurrency to
optimize reduction operations during the route. We also
propose optimizations to exploit both regular and irregular
memory access patterns for locality. Despite its effectiveness,
there are opportunities for more parallelism and offloading
optimizations that we explore in this paper.

Our prior work [21] only uses a single ALU in each cube
to process data from many vaults in a cube-level parallel
manner, which leaves abundant logic die area for deploy-
ing more ALUs at the vault controllers to enable vault-
level parallelism for computation throughput improvement.
Computing at vault-level not only improves computation
throughput, but also reduces the internal bandwidth usage
for data communications between vaults and the cube-level
Active-Routing engine, especially beneficial for pure reduc-
tion operations. However, the high overhead of computation
offloading hinders the benefit of vault-level parallelism,
which is typical in general purpose PIM architectures. As
shown in Fig. 1, the offloading traffic in the original Active-
Routing subscribes up to 30% CPU-memory bandwidth. The
offloading traffic behaves as a many-to-few-to-many pattern
while computations are being offloaded from multiple cores
to few memory ports then to many cubes in the memory
network. To tackle this problem and unlock the full po-
tential of vault-level parallelism, we propose a page gran-
ular offloading optimization to enable offloading in bulk
by packing more computation tasks in a single offloading

Vault
Controller

Intra-Cube Network

I/O I/O I/OI/O

… … Vault
Controller

Lo
gi

c L
ay

er

DRAM layer

Va
ul

t

Fig. 2: Hybrid memory cube.

command for regular data that fall within the same page,
effectively amortizing the offloading overhead for better
efficiency. Building upon our prior work, this paper makes
the following contributions:

• We extend the original Active-Routing from cube-level
parallelism to vault-level parallelism to improve the
computation throughput substantially.

• We propose a page granular offloading optimization
that offloads computations for regular data that fall
within the same page, significantly reducing offloading
overhead and improving performance. Note that this
technique is not limited to Active-Routing and can be
applied to other general purpose PIM solutions.

• Our evaluation shows that the baseline Active-Routing
can achieve up to 7× speedup compared to the state-
of-the-art PIM solution; additionally, the proposed new
techniques push the performance for an extra order of
magnitude improvement.

2 BACKGROUND

2.1 Die-Stacked Memory and Processing-in-Memory

Memory technology advances have enabled the fruition of
memory and logic integration using 3D stacking [5], making
a logic base underneath several stacked DRAM layers. Com-
munications between the logic base and DRAM layers are
facilitated by Through-Silicon Vias (TSV), the low-latency
and high-bandwidth in-silicon channels. High Bandwidth
Memory [4] and Hybrid Memory Cube (HMC) [3] are two
popular products of 3D stacked memory. Without loss of
generality, we use HMC to demonstrate Active-Routing in
this work. It is worthwhile noting that it can also be adapted
to other interconnects and memory technology such as in-
terposers and HBM. Fig. 2 depicts the HMC structure, which
has vertical vault memory partitions that are connected
to the logic layer through TSVs. On the logic layer, vault
controllers are deployed to manage the vault memory. The
controllers are placed sparsely, leaving ample unused silicon
budget to implement more complex functionalities. It has
been used for implementing computation capability ranging
from limited operations [10], [12] to full-fledged proces-
sors [9], [11]. HMCs communicate with processor or other
memory cubes through four ports. Communications among
the vaults and I/O are facilitated by an intra-cube network
on the logic die. HMC also enables larger memory size
per package and provides abundant internal and external
bandwidth with TSVs and high-speed link protocol, which
has been leveraged in many existing PIM studies [9], [11].

2.2 Memory Network for Scalable Capacity

The limited number of pins per processor chip leads to
capacity limits and bandwidth bottleneck in conventional

HUANG et al.: COMPUTING EN-ROUTE FOR NEAR-DATA PROCESSING 3

O3core

Cache N
et

w
or

k
In

te
rfa

ce

N
et

w
or

k-
on

-C
hi

p
O3core

Cache N
et

w
or

k
In

te
rfa

ce

…

HM
C

Co
nt

ro
lle

r

1

23

0 5

67

4

9

1011

813

1415

12Ho
st

 C
PU

A[i] B[i]

Fig. 3: System configuration with a Host CPU (left) connected to a
Memory network (right) that stores vectors A and B.

1 for (i = 0; i < n; i++) {
2 sum += A[i] * B[i]
3 }

Listing 1: A mac compute kernel for Active-Routing illustration.

systems with DDR memory. Hence, more processor sock-
ets need to be installed to scale system memory capac-
ity. However, the bulky data movement with respect to
light computation in data-intensive applications can lead
to CPU under-utilization due to the deficient data supply.
In contrast, HMCs can be interconnected to construct a
cost-effective memory network for scalable memory ca-
pacity. Also, widely used processor-centric systems im-
prove processor-to-processor communication while over-
looking the utilization of system bandwidth. In comparison,
memory-centric designs have been demonstrated to achieve
better bandwidth utilization in a recent study [6].

2.3 Potential of In-Network Computing
Advanced die-stacked memory technology has driven PIM
architecture research to realize near-data processing. By
providing large memory capacity and high bandwidth, a
memory network is adopted to scale PIM architectures to
accelerate data-intensive workloads [9]. Computations can
be offloaded to the memory network as data-flow graphs,
which enable computation en-route along with communica-
tion. Hence, further data movement reduction and system
efficiency improvement can be achieved through in-network
computing by leveraging massive network concurrency and
memory-level parallelism.

3 ACTIVE-ROUTING ARCHITECTURE

3.1 Architectural Overview
Fig. 3 shows the system configuration where the host CPU
is connected to a memory network, which interconnects
memory cubes to form a dragonfly topology. In additional,
large data vectors A[] and B[] are stored in several memory
cubes for computing a multiply-and-accumulate (mac) com-
pute kernel shown in Listing 1. This kernel computes sum
+= A[i]×B[i] over a large loop with loop-index i. An
Active-Routing example for this kernel is shown in Fig. 4.
In a nutshell, each A[i]×B[i] computation is embedded in
an Update packet that is offloaded from the CPU to memory
network; then the offloaded Update packets compute the
local partial sums in the memory cubes through NDP; after
offloading Updates, a Gather packet is issued for the partial

results collection from each cube, meanwhile reducing them
in the routers on the way back to the CPU. Specifically,
Active-Routing consists of three processing phases, namely
ARTree Construction, Update and Gather Phases.

• While offloading Update packets (1), an Active-Routing
Tree (ARTree) is being built along their paths toward
the scheduled compute memory cubes. For instance, an
Update packet is sent from CPU via memory cube 0 to
cube 4 as shown in Fig. 4a. It records the tree nodes
and constructs a tree branch along its path to cube 4.
Update packets scheduled at different cubes build differ-
ent branches. Additionally, if vault-level parallelism is
applied, a local vault-level branch (with the local vaults
as the leaf nodes) is built in each cube. Then all the
branches form an ARTree, as shown in Fig. 4a.

• Fig. 4b shows the Update Phase, during which near-data
processing is initiated to drive the offloaded compu-
tations. Each A[i]×B[i] operation needs to fetch its
source operands A[i] and B[i] to complete the com-
putation and update the partial sum in the scheduled
cube. Fig. 4b also shows a scenario where two operands
are stored in different cubes. In such cases, the Update

packet is sent to the scheduled compute point that is
the last common cube (cube 12) on the minimum routes
for both operands. Then, it is replicated to send two
requests for A[i] and B[i] to their resident memory
cubes 13 and 15, respectively (2). Subsequently, two
operands are responded to cube 12 to finish the compu-
tation (3). In vault-level parallelism, computation can
be dispatched to one of the vaults inside the sched-
uled cube, and operand responses are routed to the
corresponding vault for computation to produce the
intermediate result that is aggregated to a partial sum
in the local vault.

• The Gather Phase sends a Gather request after issuing
all the Update packets as shown in Fig. 4c (4). It is
multicasted from the root to each node of the ARTree.
Then Gather responses at leaf nodes initiate network
reduction to aggregate the partial sums computed in the
Update Phase, which is executed in a data-flow manner
from leaf nodes to the root along the ARTree (5). In
vault-level parallelism, the partial results in vaults are
first reduced in the local cube, then the aggregated
partial result is reduced back to the root.

Fig. 5 shows the progress timeline of the three phases
in Active-Routing. Note that ARTree Construction and Update
Phase can have a large overlap in timeline since the ARTree
can be built progressively in concurrent with computation.

3.2 Three-Phase Packet Processing
Active-Routing aims at optimizing reduction by mapping
computation kernels to the memory network for data-flow
processing. Such a mapping is referred as an Active-Routing
flow, which is assigned a unique identifier (flow ID) for
its corresponding ARTree. Each flow involves a three-phase
packet processing procedure as depicted in Fig. 6.

ARTree Construction. While processing the Update pack-
ets, each flow builds an ARTree dynamically as shown in
Fig. 6a. The flow ID is registered in the cube when it receives
an Update packet. If the Update packet is not scheduled to

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

u Operand request Operand responsev GatherUpdate Cube Node Local Vault Node A[i] B[i]

Ho
st

 C
PU

1

23

0 5

67

4

9

1011

813

1415

12

Update Packet

Local Branch
4

…0 1 31

Update PacketUpdate Packet
u

(a) Tree Construction

Ho
st

 C
PU

1

23

0 5

67

4

9

1011

813

1415

12

A[i] request

B[i] request
A[i] response

B[i] response

v
v

ww

(b) Update Phase

Ho
st

 C
PU

1

23

0 5

67

4

9

1011

813

1415

12

Gather response

Gather response

Gather response

Gather request
x

y

y

y

(c) Gather Phase

Fig. 4: Active-Routing consists of three phases, including Active-Routing Tree Construction on-the-fly (a), near-data processing in Update Phase
(b), and network aggregation along the Active-Routing Tree in Gather Phase (c).

Tree Construction

Update Phase

Gather Phase

timeline

Fig. 5: Active-Routing progress timeline of the three-phase processing
procedure.

Tree Construction Update Phase Gather Phase

Flow exists?

Register flow

Record parent

scheduled
cube?

Send operand
request(s)

Forward Update to
next hop

Record child

N

Y

N

Y

(a) Update packet

Record operand value

Operand(s)
ready?

Compute new partial result

Y

N

(b) Operand response

Set Gather initiated

Has
children?

Replicate Gather to
children

Y

N

(c) Gather request

Aggregate partial result from child

Subtree Update
finished?

Gather response to parent
deregister flow

N

Y

(d) Gather response

Fig. 6: Packet processing flow chart for update packet (a), operand
response (b), gather request and (d) gather response packet (c).

compute at the current cube, it is forwarded to its child
based on the routing to its scheduled compute cube. There-
fore, by keeping track of parent and children information at
each cube, we construct an ARTree.

Update Phase. NDP is initiated to process Update packets
and operand request/response packets in parallel with the
ARTree construction phase, as shown in Fig. 6a and 6b. While
processing Update packets, operand requests are issued to
the memory from the scheduled compute cube. When the
operands are responded, the computation is scheduled to
calculate the partial result.

Gather Phase. Fig. 6c and 6d show the packet processing
in Gather Phase to commit an Active-Routing flow. This phase
multicasts the Gather requests from the root to leaf nodes

in a forward pass, and reduces the partial results from
leaf nodes to the root node in the backward pass. Once
the subtree of a node completes Update Phase, it responds
to the parent and releases the flow record. After receiving
Gather responses from all the children, the parent finishes
the Update Phase of its branch. When the root node completes
its own Update Phase and receives the Gather responses from
its children, it commits the flow back to the CPU.

3.3 Extending to Vault-Level Parallelism
The original Active-Routing constructs cube-level trees
where each cube maintains the parent-children relationship
between the adjacent cubes. In this work, we further extend
it to build vault-level trees, allowing vaults to serve as the
leaf compute nodes of the ARTree as shown in Fig. 4a.
In vault-level Active-Routing, the local vaults form a lo-
cal branch while the branch between cubes is a remote
branch. Thus, each cube not only maintains the remote
branch between cubes, but also keeps track of the local
branch for the relationship of the cube (parent) and local
vaults (children). With the vault-level parallelism extension,
Active-Routing can exploit the high TSV bandwidth between
DRAM layers and vault controllers as well as reduce the
bandwidth usage of intra-cube networks, leading to higher
parallelism and better computational throughput. Note that
the packet processing procedure presented in the previous
section also applies to vault-level Active-Routing.

3.4 Offloading Optimizations
Due to metadata in the packet header and packet’s inter-
nal fragmentation in packet-switching techniques, operand
fetching and instruction offloading can incur extra over-
head. To amortize this overhead, we can take advantage
of the memory access patterns of operand fetching by of-
floading multiple operations at a time. Active-Routing targets
for optimizing the reduction operation over myriads of
intermediate results of arithmetic operators, such as sum
=

∑n

i=1 *Ai×*Bi, where Ai and Bi store the operand ad-
dresses. When vector A stores data addresses of graphs or
sparse matrices, the access pattern tends to be irregular.
When it stores the array element addresses, the memory
access pattern is regular. Hence, the combinations of mem-
ory access patterns of the two operands can be grouped into
three categories — irregular-irregular, regular-irregular, and
regular-regular. Similarly, for pure reduction, the memory

HUANG et al.: COMPUTING EN-ROUTE FOR NEAR-DATA PROCESSING 5

access patterns can be simply categorized as regular and
irregular. Based on these categories, we propose several
ways to leverage data locality.

3.4.1 Cache Block Granular Offloading
We exploit data locality by offloading computations in
cache block granularity for regular and regular-regular access
patterns as parallel vector processing. To handle regular-
irregular access pattern, the irregular data is first fetched
and offloaded with computation to the regular data resident
location for execution. These two offloading techniques
benefit from data locality and effectively reduce memory
accesses. Since irregular (irregular-irregular) memory access
pattern breaks data locality, each offloaded packet only con-
tains computation for a single element (pair) as scalar opera-
tions. Active-Routing can cooperate with previous study [11]
to further optimize irregular-irregular access pattern, which
we leave for future work.

3.4.2 Page Granular Offloading
While offloading from multicore CPU through the memory
controllers to many memory cubes, the offloading traffic
behaves as a many-to-few-to-many pattern. Such a pattern can
make the memory port a potential bottleneck for offloading,
and lead to computation under utilization in the memory
cubes. Although cache block granular offloading can process
the data faster with vector processing, the computations
embedded in an Update packet is limited. Therefore, packing
more computations in each offloaded packet can increase
the computation request intensity to improve utilization
and throughput. In applications with regular memory access
patterns, the data to be processed are usually in kilo-bytes
or even mega-bytes with sequential addresses, which can
be many pages of memory. Fortunately, each physical page
frame mapped by a virtual page resides in a single cube,
so the Update requests for data in the same page are issued
to the same cube. To exploit this, we propose page granular
offloading to pack more computations in an Update packet to
process consecutive addresses within the same page, aiming
at mitigating the offloading bottleneck to work with vault-
level parallelism in synergy.

4 IMPLEMENTATION

4.1 Programming Interface and ISA Extension
We design simple programming interfaces, Update and
Gather, to translate the program semantics into extended
instructions. The ISA extensions are used to communicate
with network interfaces to offload computations to the
memory network for Active-Routing execution.
UpdateRR(void *src1, void *src2, void *target, int op);
UpdateRI(void *src1, void *src2[], void *target, int op);
UpdateII(void *src1, void *src2, void *target, int op);
UpdatePage(void *src, int num_lines, void *target, int op);
UpdateRRPage(void *src1, void *src2, void *target, int

num_lines, int op);
Gather(void *target, int num_threads);

Listing 2: Active-Routing programming interfaces.

Listing 2 shows the definitions of Update and Gather

APIs that facilitate offloading of Active-Routing flows. The
first three Update APIs carry two source memory addresses

1 // A[] and B[] are page aligned and cover multi-pages
2 int stride = PAGE_SIZE / sizeof(float);
3 int num_lines = PAGE_SIZE / CACHELINE_SIZE;
4 float sum = 0;
5 for (i = 0; i < n; i += stride) {
6 UpdateRRPage(&A[i], &B[i], &sum, num_lines, FMAC);
7 }
8 Gather(&sum, 1);

Listing 3: The page granular offloading Active-Routing code of mac.

of an arithmetic operation. The postfix RR, RI and II of
Update APIs are used for regular-regular/regular, regular-
irregular and irregular-irregular/irregular memory access pat-
terns, respectively. The UpdatePage API is designed to sup-
port page granular offloading for regular pure reduction,
where the src argument is the base address for the consecu-
tive cache lines within the same page for the operands, and
the num_lines indicates the number of consecutive cache
lines to be processed. Similarly, the UpdateRRPage API is
introduced to support page granular offloading for regular-
regular two-operand computations. Note that the allocated
memory for both the operands should be aligned to page
size. In the best case, the src/src1/src2 is the base address
of a page and num_lines is the total number of cache lines
in a page, which offloads computation for a full page. The
opcode is passed through the op argument to indicate the
arithmetic and reduction operation, such as float multiply-
and-accumulate. The target field in the APIs is the address
of the reduction variable that is hashed to a unique identifier
for each flow. In Gather API, the num_threads argument is
for the number of threads working on the flow, which is used
for an implicit barrier at the root of ARTree to guarantee all
the Updates have been initiated. Compilers translate these
APIs to extended intrinsic instructions. During execution,
instructions are decoded to write the offloading information
to a set of dedicated registers in the network interface
(NI). Then NI assembles this information into an Update

or a Gather packet and sends it to the memory network.
Listing 3 shows the page granular offloading Active-Routing
code example for the mac compute kernel, assuming both
A[] and B[] are page aligned and covers multiple pages
of memory. As shown the number of Update packets is the
same as the number of pages vector A[] or B[] covers.

4.2 Network Interface
Active-Routing uses programming interfaces in applications
to offload computation. The APIs are translated by compil-
ers into extended intrinsic instructions. These instructions
are decoded to assemble packets that are offloaded to the
memory network. This logic can be added with marginal
changes by augmenting the network interface (NI), which
connects the processor core to the network-on-chip. In NI,
a set of dedicated registers are added to be used by the
extended instructions that write opcode and operand in-
formation to these registers during execution. Then, these
registers are read by NI to compose an Update or a Gather

packet to offload to the memory network.

4.3 Active-Routing Engine
On the logic layer of HMC, an Active-Routing Engine (ARE)
is deployed to facilitate Active-Routing functionalities as
shown in Fig. 7a. It is integrated as an attached module

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

Vault
Controller

Intra-Cube Network

I/O I/O I/OI/O

… Vault
Controller

Active-Routing
Engine

Lo
gi

c L
ay

er

DRAM layer

Va
ul

t

Packet
Processing

Unit
Flow Table

Operand Buffers

ALU

(a) HMC logic layer for Active-Routing engine

64-bit 6-bit 64-bit 64-bit 64-bit 2-bit 4-bit 1-bit
flowID opcode result req_counter resp_counter parent children	flags Gflag

(b) Flow table entry

64-bit 6-bit 64-bit 1-bit 64-bit 1-bit
flowID opcode operand1 op1_ready operand2 op2_ready

(c) Operand buffer entry

Fig. 7: Active-Routing microarchitecture has the engine implementation in logic layer (a) with flow table entry (b) and operand buffer entry (c).

to the router switch. ARE consists of 1) a packet processing
unit to process and generate packets, 2) a flow table to keep
track of Active-Routing flows, 3) a pool of operand buffers, 4)
an ALU for computation.

4.3.1 Packet Processing Unit
Updates and Gathers are decoded by the packet processing
unit, which also schedules corresponding actions as shown
in Fig. 6. It generates operand requests to fetch the data and
Gather response to commit the partial result to its parent.

4.3.2 Flow Table
Flow table keeps track of both the states and structure
information of each flow, whose entry is shown in Fig. 7b.
Each table entry is record for a tree node for maintaining the
tree structure by holding a unique flow ID, an opcode for
computation, and its parent and children relationship.
It also keeps the state of the flow, including the partial
result, the req_count, the rep_count, and the Gflag.
The req_count and rep_count counter values are used to
keep track of the number of issued requests and committed
operations. When these two counters are the same, an
Update Phase is considered finished. The Gflag is set by a
Gather request to indicate that the flow can begin reduction
once Update Phase is done.

4.3.3 Operand Buffers
Update packets are processed to generate request(s) to fetch
operands and perform the computation after receiving
the response. Operand buffer is provided to temporarily
hold the operands that are waiting for computation, there-
fore keeping the pending Update operations. We make the
operand buffers a shared resource by different flows in
order to improve the utilization. An operand buffer entry
is reserved before issuing operand request(s), because co-
existing flows can easily lead to deadlock due to wait-and-
hold condition, especially for two-operand operations. An
operand buffer entry is shown in Fig. 7c, which holds the
flowID, the opcode, two ready flags for the two operand
fields to indicate their readiness. We use a free and a
ready queue to keep IDs of free and ready operand entries,
respectively, for ease of direct lookup, thereby reducing the
operand buffer access time.

4.3.4 ALU
A light-weight ALU is implemented in ARE for arithmetic
computations. Different operations over various data types,

TABLE 1: Delay and Power of Supported Operations.

Mnemonic Operation Description Delay (ns) Power (mW)

FADD float† add 0.78 1.0449
FMULT float multiply 0.78 1.1316
FMAC float mac 1.56 1.1316
FMAC16 16-element vector float mac 3.12 18.1056
DADD double† add 0.77 1.9549
DMULT double multiply 0.78 2.7459
DDIV double division 0.78 2.6349
DDAC double divide-and-accumulate 1.55 2.6349
DMAC double mac 1.55 2.7459
DMAC8 8-element vector double mac 3.09 21.9672
† float/double stands for single/double-precision floating-point.

such as reduction operations sum, division and multiply-
accumulate over single- and double-precision floating-point
data, can be supported. Table 1 lists the supported oper-
ations with their delay and power, which are synthesized
using TSMC 28nm library targeting at 1250 MHz clock rate.

4.3.5 Putting It All Together

When an Update request packet is received, the Packet Pro-
cessing Unit decodes and processes it. If the corresponding
flow is not found in the flow table, an entry is allocated for
the new flow. Then the flow is registered and entry fields are
initialized by keeping the flow ID and the packet’s previous
hop as parent in the entry. If the packet is not scheduled
for the current cube, it is forwarded based on the routing to
the next node, which is recorded in the children flags.
Otherwise, the req_count is incremented and an operand
buffer entry is allocated from the free queue. Meanwhile,
operand request packets are generated with buffer entry
ID and the operand address embedded. If all the operand
buffers are occupied, the packet processing unit is stalled
until an entry becomes free. When the operand response
arrives, its operand buffer entry is updated. If operands are
ready, the operand entry ID is pushed to the ready queue
for processing. ALU inspects the ready queue to schedule
computation. After finishing execution, result is updated
and the resp_count is incremented in the corresponding
flow entry. The operand buffer is then released and its ID is
pushed back to the free queue for reuse. While processing
Gather request packets, the Gflag of the corresponding flow
table entry is set to initiate Gather Phase after the completion
of the Update Phase of the subtree. If the cube has children
cubes, the packet is replicated and sent to its children. Upon
receiving a Gather response from a child for partial result
update, its corresponding child field is cleared. Note that

HUANG et al.: COMPUTING EN-ROUTE FOR NEAR-DATA PROCESSING 7

4-bit
children flags

4-bit 32-bit
cube children flags vault children flags

(a) Cube-level flow table entry

64-bit 6-bit 64-bit 64-bit 64-bit 1-bit
flowID opcode result req_counter resp_counter Gflag

(b) vault-level flow table entry

Vault
Controller

Intra-Cube Network

I/O I/O I/OI/O

… Vault
Controller

Cube-Level
ARE

Vault-Level
ARE

Decode

DRAM
Controller

Vault

Request
Packet

Response Packet
Packetize

(c) Augmented vault controller for Active-Routing support

Fig. 8: Vault-level parallelism support with cube-level flow table entry (a),
vault-level flow table entry (b), and augmented vault controller (c).

every time the result is updated by either computation
in the current cube or Gather packet from a child. If the
children flags are cleared and the Gflag is set, a Gather

packet is generated to reply to the partial result to the parent
and release the flow table entry.

4.4 Vault-Level Parallelism Support
With vault-level parallelism extension, the ARE in the orig-
inal Active-Routing now is termed cube-level ARE for dif-
ferentiation. To support vault-level Active-Routing, the cube-
level ARE acts as the parent for all the local vault controllers
and issues Update packets to the vault children. The cube-
level flow table entry is extended to track the local vault
children as depicted in Fig. 8a. For simplicity, the cube-level
ARE dispatches Update packets to the vaults in a round-
robin fashion for regular-regular two-operand computations.
For pure reduction, it issues Updates to the local vaults
based on the operand address to reduce inter-vault com-
munication. Note that unlike the original Active-Routing,
vault-level parallelism designates the cube-level ARE only
as a reduction point for the Gather responses from the cube
and vault children, rather than as the compute point for all
data in the cube. This also simplifies the design of ALU and
operand buffer. The vault controller is augmented with a
compute engine as shown in Fig. 8c, where the vault-level
flow table entry is simplified because the vault controller
is the leaf node and always has the cube-level ARE as
the parent. Once a packet arrives at the vault controller,
the decoder inspects the header of the packet and directs
it to the vault-level ARE if the packet is either an Update

request or an operand response from a remote vault. The
local data response from the vault is also directed to the local
vault-level ARE if it is a local data response. The workflow
of ARE remains the same as in cube-level parallelism. A
credit-based flow control of operand buffer availability in
the vault-level ARE to the cube-level ARE is maintained
for computation scheduling to avoid protocol deadlock and
guarantee correctness.

4.5 Page Granular Offloading Support
As data in a page is distributed in different vaults in a cube,
it is expensive to process the page granular Update packet as
page-wide vector processing. Therefore, we generate cache

block granular Update packets from a page granular Update

packet to leverage the cache block vector processing. The
number of generated cache block granular packets depends
on the num_lines (the number of consecutive cache blocks)
embedded in the page granular Update packet. When the
original Active-Routing is enhanced with page granular of-
floading optimization, the ARE processes the page granu-
lar Update and generates one cache block granular Update

packet at a time. Meanwhile, it decrements the num_lines
and updates the addresses information in the packet header.
When num_lines is zero, cache block granular Updates for
all the offloaded cache blocks have been issued and the
page granular Update packet is consumed. Similarly, in VLP,
the cube-level ARE processes the page granular Update and
dispatches the computations to the vaults. Then each vault
controller fetches the operand cache block(s) from either
local or remote vault to finish the dispatched computation.

4.6 Integrity Considerations

Virtual memory support and cache coherence are two im-
portant considerations for seamlessly integrating Active-
Routing into modern computer systems. In this section, we
describe how they are supported to enable Active-Routing.

4.6.1 Virtual Memory
As Active-Routing is implemented by extending the ISA, the
offload instructions are treated as extended active loads/s-
tores. Therefore, they can perform the same virtual to phys-
ical address translation as normal load/store instructions.
For the page granular offloading, since all the data in a page
resides in the same physical frame, it is also supported by
modern virtual memory systems. With this design principle,
we can avoid overhead for address translation units in the
directories, or memory.

4.6.2 Cache Coherence
To offload Active-Routing instructions, it is important that
the offloaded flow is using the up-to-date data in memory.
A naı̈ve way is allocating an uncacheable memory region
for the data that is used by Active-Routing. However, it can
hurt the performance in other program execution phases
which can use the deep cache hierarchy to exploit locality.
To ensure coherent Active-Routing, offloaded packets are
first sent to the directory to query for back-invalidation if
data is cached on-chip similar to [12]. Then it is issued
to the memory. Since Update packets are sent in parallel,
the back-invalidation overhead is amortized across massive
concurrent packets. We observe that back-invalidation hap-
pens rarely in our experiments. Further optimizations can
be applied by integrating a recent coherence mechanism
dedicated for near-data architectures [22].

4.7 Enhancements in Active-Routing

We have two observations that may significantly impact the
performance of Active-Routing: (1) the decision for choosing
the root of a tree can affect the network congestion, and (2)
the offloading overhead widely varies with the change in its
granularity. To further improve Active-Routing performance,
we address these two points as follows.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

backprop lud
pagerank

sgemm
spmv

gmean
1.5

1.0

0.5

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 R
un

tim
e

Sp
ee

du
p

(lo
g) Naive-ART ART-tid ART-addr

Fig. 9: Runtime speedup of ART variants over HMC Baseline.

Since the computations are offloaded from the host CPU
through the memory ports, we naturally consider the cubes
that are attached to the four channel ports as root node
candidates. Starting from a static approach, cube 0 is always
assigned as the root node. In order to balance the load
better in the network, we propose two enhancements that
consider all the four corner cubes as root candidates and
are able to create multiple trees for one flow. The first one
uses thread ID to interleave the candidate cubes in order
to balance the trees rooted from four corners among multi-
thread applications, named as ART-tid. Since the schedul-
ing is oblivious to the data location, it can create deep
trees and lead to more hop traversals for Update request
packets. Another enhancement technique takes the operand
addresses into account and sends the Update packet through
the port nearest to its destination. This creates shallow trees
with respect to ART-tid, we name it as ART-addr. When
massive packets are created, it may lead to congestion on
certain ports depending on memory addresses. Since these
two schemes can create multiple ARTrees for one flow, the
extended HMC memory controllers that manage the trees
are coordinated to merge the subflows at the end of Gather
Phase. On the contrary, Naı̈ve-ART constructs only one
ARTree for each flow.

To reduce offloading overhead and the number of mem-
ory accesses, we adapt the offloading granularity, to exploit
the data locality of different memory access patterns dis-
cussed in §3.4. This optimization is applied to both ART-tid
and ART-addr, whereas Naı̈ve-ART neither considers gran-
ularity nor data locality and simply offloads every single
operand pair. This Naı̈ve-ART may experience contention
in operand buffer resources, and network contention in
addition to high offloading overhead due to static manner
for tree construction and simple offloading.

Fig. 9 shows the improvement impacts of the enhance-
ments over Naı̈ve-ART in log scale speedup that is normal-
ized to HMC conventional system baseline (not shown). It
shows that with the naı̈ve way of static tree formation and
offloading, Naı̈ve-ART is even worse than HMC baseline,
especially when there is some data locality. In contrast, bet-
ter performance can be achieved by exploiting the memory
access patterns and building the trees dynamically. In the
following sections, we only present ART-tid and ART-addr
for detail analysis.

TABLE 2: System Configurations

Parameter Configuration

CPU

Core
16 OoO cores @ 2GHz

issue/commit width: 4, ROB: 128
L1I/D Cache Private, 32KB, 4 way

L2 Cache S-NUCA 16MB, 16 way, MESI
NoC 4x4 mesh, 4 MC at 4 corners

Memory

DRAM Timing
tCK = 0.8 ns, tRAS = 21.6 ns, tRCD = 10.2 ns

tCAS = 9.9 ns, tWR = 8 ns, tRP = 7.7 ns

HMC
4GB/cube, 4 layers

32 vaults, 8 banks/vault

HMC Network

16 cube DragonFly, 4 controllers
Minimal routing, virtual cut-through

16 lanes link, 12.5 Gbps/lane
CrossbarSwitch clock @ 1250 MHz

Flow Table 16 flow entries
Active-Routing Operand Buffer 128 buffer entries

Engine
Processing Element

1250 MHz clock frequency
An arithmetic logic unit

5 METHODOLOGY

5.1 System Modeling and Configuration
We use an execution-driven simulator McSimA+ [23] with
detailed microarchitecture models as the backend for cores
and cache hierarchy. We integrated a cycle-accurate sim-
ulator CasHMC [24] with McSimA+ to replace its mem-
ory system for HMC memory modeling, which is further
extended for interconnect functionality. We leveraged Mc-
SimA+’s Pin [25] based front end to implement Active-
Routing instruction extensions. The microarchitectural be-
haviors of Active-Routing were implemented in the crossbar
switch and vault controllers on the HMC logic layer. We
configured the host CPU as a chip-multiprocessor with
network-on-chip and two-level cache hierarchy with MESI
coherence protocol. The 16 off-chip HMCs are connected in a
Dragonfly topology [6]. The system configuration evaluated
in this work is shown in Fig. 3 and described in Table 2.

For power modeling, we use CACTI [26] for CPU on-
chip cache and HMC buffer power estimation, assuming
5pJ/bit for each hop in memory network [27] and 12 pJ/bit
for HMC memory access [3]. We conservatively model 64-
byte size for both a flow table entry and an operand buffer
entry due to the parameter constraint of CACTI. The access
time, energy and area for the flow table are 0.428 ns, 0.0620
nJ/read (0.0626 nJ/write) and 0.069 mm2, respectively. The
access time, energy and area for the operand buffers are
0.352 ns, 0.0342 nJ/read (0.0474 nJ/write) and 0.252 mm2,
respectively. The ALU is implemented in Verilog and syn-
thesized using TSMC 28 nm library. The timing of different
operations are listed in Table 1. The power and area of the
ALU is 43.05 mW and 0.15 mm2, respectively. Note that
Active-Routing does not incur extra computation energy but
just changes the place of computation. For vault-level paral-
lelism support, extra ALUs and flow tables are required for
each vault while operand buffers can be distributed, which
accounts for 7.01 mm2 of 32 more ALUs for 32 vaults in a
memory cube.

5.2 Workloads
Active-Routing targets applications that have abundant re-
duction on data processing operations such as multiply-
accumulate or pure reduction operations over a large mem-
ory footprint. We studied five kernels from several bench-
mark suites. These kernels are widely used in diverse appli-

HUANG et al.: COMPUTING EN-ROUTE FOR NEAR-DATA PROCESSING 9

TABLE 3: Workloads

Workloads Optimization Region Input Data Size

Benchmarks

backprop [28] activation calculation in feedforward pass 2097152 hidden units
lud [28] upper and lower triangular matrix decomposition 4096 matrix dimension

pagerank [2] ranking score calculation web-Google graph [29]
sgemm [30] matrix multiplication 4096x4096 matrix
spmv [30] matrix-vector multiplication loop 4096 matrix dimension and 0.7 sparsity

Microbenchmarks

reduce sum reduction over a sequential vector 6400K dimension
rand reduce sum reduction over random elements 6400K elements

mac multipy-and-accumulate over two sequential vectors two vectors with 6400K dimension
rand mac multiply-and-accumulate over two random element lists two lists with 6400K elements

cation domains such as scientific computing, graph analyt-
ics, language modeling and deep learning. We also develop
four data-intensive microbenchmarks for case study. In or-
der to support execution with McSimA+ frontend, all the
applications were re-implemented using the Pthread library.
We chose sufficient large input data so as to stress the last
level cache and memory as well as to account for reasonable
simulation time. The working set sizes varied from 80 MB
to 0.5 GB. The memory requirements of these kernels used
in various applications tend to grow significantly larger
as data scales.We summarize the workloads and applied
optimization region as well as input data in Table 3.

6 EVALUATION

In this section, we evaluate ART-tid and ART-addr and
compare them to PEI [12], which is implemented by adding
a computation unit in each vault controller to support PEIs.
It can compute a dot product of two 4-dimension vectors
in a cycle, one of the vector operands (either regular or
irregular) are brought to cache and sent to the memory
location of the other half (should be regular) for processing
in memory. We first compare the performance followed by
power and energy analysis. Then we show the impact of
vault-level parallelism and offloading granularity, as well as
the potential of dynamic offloading through a case study.

6.1 Performance
6.1.1 Speedup
Fig. 10a and 10b show the runtime speedup of benchmarks
and microbenchmarks, respectively. Both ART-tid/addr
schemes form multiple trees from all the memory ports for
massive flows in the benchmarks. The results show more
than 6% performance improvement across various applica-
tions with respect to PEI except lud. Specifically, ART-addr
improves sgemm, a dense matrix multiplication kernel by
7×. In sgemm, almost all the runtime is spent in matrix
multiplication. During execution, PEI needs to fetch one
of the source matrices and also update the target matrix,
which causes read-write contention on the cache, leading to
cache thrashing. In contrast, ART has no contention between
source matrices and target matrix since both source matrices
are processed in memory, thereby outperforming PEI. In
geomean, ART-tid and ART-addr improve performance by
15% and 60% over PEI, respectively. For lud, PEI performs
slightly better than both ART-tid and ART-addr. In case of
spmv, PEI outperforms ART-tid but performs worse than
ART-addr. This is because in these two applications, the
computation distribution is not balanced, which causes con-
tentions in compute/buffer resources.

Note that the PEI implementation is optimistic since we
have no limit on operand buffers. For spmv, ART-addr works
better than ART-tid because of more balanced work distribu-
tion. In microbenchmarks, the whole execution is the region
of interest for optimization. Both ART-tid/addr alternatives
work well across all microbenchmarks. Compared with PEI,
ART-tid/addr achieves 7×/10× speedup, respectively.

Fig. 13 shows a heatmap of spmv for ART-tid and ART-
addr. In the heatmap darker colors are used for denoting
higher number of event occurrences. Each big square depicts
the whole memory network and each small square block
represents one cube in the memory network. In ART-addr,
the work is evenly scheduled in each cube which can have
better resource utilization. While in ART-tid, computations
are centered in a few cubes which leads to compute/-
operand resources contention and less parallelism1.

6.1.2 Update Offloading Round-trip Latency
Fig. 11 shows the round-trip latency breakdown into re-
quest, stall and response for understanding the contribution
of different communication components of Update offload-
ing. As expected, the total latency is inversely proportional
to the performance shown in Fig. 10. In general, ART-tid
and ART-addr dynamically distribute the Updates across
all available ports for tree construction. The ART-tid/addr
schemes can balance the load evenly and utilize the memory
network resources more efficiently. Compared to ART-tid,
ART-addr has lower round-trip latency across all bench-
marks. ART-tid constructs trees by interleaving memory
ports using thread IDs. Therefore, the tree root is not neces-
sarily close to the directory where Update packets check for
coherence. In contrast, ART-addr distributes Updates based
on addresses, which makes the tree root physically close
to the directory, thereby incurring less request latency. The
stalls are mostly due to queuing in HMC controllers.

6.1.3 Data Movement
We evaluate data movement as the data size transferred
between the host processor and memory network. Fig. 12
shows the data movement breakdowns for normal data and
active data transfer. For most applications, ART-tid/addr
can reduce the memory requests compared to PEI. In pager-
ank, the region of interest for optimization is the code seg-
ment that has reduction on large amounts of data processing
tasks. In this benchmark, only parts of the whole parallel
phase can be accelerated by Active-Routing. The other phases
still require data movement. Another overhead comes from

1. The operand distribution are different due to the dynamic memory
allocation.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

backprop lud
pagerank

sgemm
spmv

gmean
0
1
2
3
4
5
6
7
8

R
un

tim
e

Sp
ee

du
p

PEI ART-tid ART-addr

(a) Benchmarks

reduce

rand_reduce mac

rand_mac
gmean

0
10
20
30
40
50
60

R
un

tim
e

Sp
ee

du
p

PEI ART-tid ART-addr

(b) Microbenchmarks

Fig. 10: Runtime speedup over PEI.

A
R

T-
tid

A
R

T-
ad

dr

A
R

T-
tid

A
R

T-
ad

dr

A
R

T-
tid

A
R

T-
ad

dr

A
R

T-
tid

A
R

T-
ad

dr

A
R

T-
tid

A
R

T-
ad

dr

0
20
40
60
80

100
120
140
160

La
te

nc
y

(c
yc

le
s)

backprop lud pagerank sgemm spmv

request stall response

(a) Benchmarks

A
R

T-
tid

A
R

T-
ad

dr

A
R

T-
tid

A
R

T-
ad

dr

A
R

T-
tid

A
R

T-
ad

dr

A
R

T-
tid

A
R

T-
ad

dr

0

50

100

150

200

250

La
te

nc
y

(c
yc

le
s)

reduce rand_reduce mac rand_mac

request stall response

(b) Microbenchmarks

Fig. 11: Update round-trip latency breakdown
into request, stall and response latency.

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 D
at

a
M

ov
em

en
t

backprop lud pagerank sgemm spmv

normal request
active request

normal response
active response

(a) Benchmarks

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 D
at

a
M

ov
em

en
t

reduce rand_reduce mac rand_mac

normal request
active request

normal response
active response

(b) Microbenchmarks

Fig. 12: On/off-chip data movement normal-
ized to PEI.

A
R

T-
tid

 (s
pm

v)

Compute point distribution

0

41e5
Operand distribution

0

41e5

A
R

T-
ad

dr
 (s

pm
v)

0

41e5

0

41e5

Fig. 13: SPMV compute point and operand distribution.

massive fine-grained offloading due to the irregular mem-
ory access pattern.

In the microbenchmarks, the whole parallel phase can
be optimized, so the data movement decreases significantly.
In reduce, the majority of the runtime is spent on summing
up all the elements of a large array as it accesses the array
elements sequentially. Similarly, mac operates multiply-and-
accumulate over two large vectors. Both of them have
friendly spatial locality in their memory accesses, which is
exploited in cache-block granular offloading. However, PEI
needs to bring part of the data on chip and offload it with
the instruction, causing data movements. For rand reduce
and rand mac, ART-tid/addr have more data movements
compared to the sequential accesses due to offloading over-
head. Since PEI still needs to bring the data for random
multiplication on chip before atomic write, it incurs more

data movement.

6.2 Power and Energy

6.2.1 Power Consumption

We present the power consumption breakdowns into cache,
memory and memory network in Fig. 14, which shows
that ART-tid/addr consumes similar memory power and
less network power than PEI except for pagerank. In ART-
tid/addr, data is fetched from memory and communicated
in the network. However in PEI, part of the operands need
to be brought across the network to on-chip cache and
be sent with the offloaded instruction, leading to cache
contention even cache thrashing. For example, sgemm has
cache contention between reading of large source matrix and
writing to target matrix. The cache thrashing leads to more
memory accesses. Consequently, PEI and ART have similar
memory access intensities. For regular memory accesses in
terms of network power, ART feeds the data in the network
with minimum routing while PEI brings data all the way
to the CPU, thus PEI consumes more power. One exception
is pagerank that has irregular memory access patterns. ART
offloads computation flows in single operand granularity,
causing high overhead in offloaded packets and operand
packets, thereby consuming more power.

Microbenchmark mac has similar power characteristics
as the benchmarks that have regular memory access pat-
terns. For reduce, ART-tid/addr can massively process the
reduction near-data in memory cubes without moving data
around, which leads to more intensive memory accesses and
more offloading. For irregular memory access patterns such
as rand reduce and rand mac, PEI has no data reuse and can
only optimize atomic updates, leading to many memory
accesses with more power consumption.

HUANG et al.: COMPUTING EN-ROUTE FOR NEAR-DATA PROCESSING 11

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 P
ow

er
 B

re
ak

do
w

n

backprop lud pagerank sgemm spmv

cache memory network

(a) Benchmarks

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 P
ow

er
 B

re
ak

do
w

n

reduce rand_reduce mac rand_mac

cache memory network

(b) Microbenchmarks

Fig. 14: Normalized power consumption
over PEI.

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

B
re

ak
do

w
n

backprop lud pagerank sgemm spmv

cache memory network

(a) Benchmarks

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

PE
I

A
R

T-
tid

A
R

T-
ad

dr

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

B
re

ak
do

w
n

reduce rand_reduce mac rand_mac

cache memory network

(b) Microbenchmarks

Fig. 15: Normalized energy consumption
over PEI.

backprop lud
pagerank

sgemm
spmv

gmean
2.0

1.5

1.0

0.5

0.0

0.5

N
or

m
al

iz
ed

 E
D

P
(lo

g)

ART-tid ART-addr

(a) Benchmarks

reduce

rand_reduce mac

rand_mac
gmean

3.0

2.5

2.0

1.5

1.0

0.5

0.0

N
or

m
al

iz
ed

 E
D

P
(lo

g)

ART-tid ART-addr

(b) Microbenchmarks

Fig. 16: Logarithmic scale of normalized energy-
delay product (EDP) over PEI.

reduce mac reduce mac reduce mac
0

10
20
30
40
50
60

R
un

tim
e

Sp
ee

du
p

ov
er

 P
EI

16 cubes, 6.4M 64 cubes, 6.4M 64 cubes, 25.6M

PEI ART-tid ART-addr

Fig. 17: Microbenchmarks on networks with 16 and 64 cubes with input
vectors of 6.4 millions and 25.6 millions dimensions.

6.2.2 Energy Consumption
Energy consumption is categorized into cache, memory
and memory network, as shown in Fig. 15. ART-tid/addr
reduces the energy consumption across all the benchmarks
with regular memory access patterns and microbenchmarks.
For applications that have irregular access patterns such as
pagerank, the main contribution is from network energy due
to the high overhead of fine-grained offloading. For sgemm
and microbenchmarks, energy consumption is reduced dra-
matically owing to significant runtime speedup. We gain
enormous benefit since most parts of these applications can
be accelerated by Active-Routing.

6.2.3 Energy-Delay Product
Fig. 16 shows the normalized energy-delay product (EDP)
over PEI in logarithmic scale for energy efficiency. It shows
that ART-tid/addr has lower EDP for all applications except
for spmv with ART-tid. The runtime reductions and energy
consumption jointly contribute to EDP reduction, achieving
significant energy efficiency improvements. In spmv with
ART-tid, the imbalanced work distribution leads to worse
execution time. Since the energy saving is offset by the

performance degradation, ART-tid has lower EDP on spmv.
To summarize, ART-tid and ART-addr reduce the EDP by
80% on average compared to PEI.

6.3 Scalability

To evaluate scalability, we also experimented with reduce
and mac on a 64-cube dragonfly memory network with
the results shown in Fig. 17. For mac with the same prob-
lem size, ART-tid and ART-addr achieve 4.6× and 6.3×
speedup compared to PEI on 16-cube memory network,
whereas on 64-cube memory network, ART-tid and ART-
addr outperform PEI for 4.7× and 6.4× improvements,
respectively. As we scale the problem size four times as the
memory capacity scales, ART-tid and ART-addr improve the
performance of mac over PEI by 4.6× and 7.1×, respectively.
Similarly, these techniques have the same trend on reduce.
When comparing each technique’s performance on the two
different memory networks for the same problem size, PEI
incurs 2% performance degradation on a 64-cube network
compared to its performance on a 16-cube memory network.
Whereas both ART-tid and ART-addr have less than 0.1%
performance difference, either better or worse, on the two
memory networks. Since PEI has more on/off chip data
transfer than ART, it is more sensitive to the increased mem-
ory access latency due to higher average network latency
in larger scale memory networks. In contrast, ART benefits
from both network concurrency and memory parallelism,
thereby scaling better for larger memory networks.

6.4 Vault-Level Parallelism and Offloading Granularity

Fig. 18 shows the runtime speedup of the original Active-
Routing (ART-tid/addr), vault-level parallelism (VLP), page

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

sgemm mac reduce
100

101

102

103

R
un

tim
e

Sp
ee

du
p

ov
er

 P
EI

 (l
og

)

ART-tid
ART-addr
ART-tid-VLP
ART-addr-VLP

ART-tid-Page
ART-addr-Page
ART-tid-VLP-Page
ART-addr-VLP-Page

Fig. 18: Runtime speedup of original Active-Routing (ART-tid/addr),
vault-level parallelism (VLP), page granular offloading (Page) and their
combinations over PEI.

granular offloading (Page) and their combinations of Active-
Routing normalized to PEI.

VLP. When applying VLP on top of cache block granular
offloading, ART-tid-VLP and ART-addr-VLP show similar
results as ART-tid and ART-addr. That is because the request
arrival rates at memory cubes cannot fully utilize the com-
pute throughput of the engine due to the offloading bottle-
neck created by the many-to-few-to-many offloading traffics
from multicore CPU through a few memory controllers to
many memory cubes. So ART-tid/addr is good enough to
sustain the Update requests.

Page. To mitigate this bottleneck, we apply page gran-
ular offloading to pack more computation tasks in a single
Update packet. ART-tid-Page and ART-addr-Page show that
page granular offloading can improve the performance over
cache granular offloading in ART-tid/addr by an order of
magnitude in for both two-operand operations (sgemm and
mac) and pure reduction (reduce). This indicates the cache
block granular offloading fails to drive the peak computa-
tion throughput of Active-Routing, leaving the compute en-
gine underutilized. It also shows that ART-tid-Page is better
than ART-addr-Page on reduce because that the dramatically
reduced offloading overhead mitigates the blocking at the
memory ports, making ART-tid-Page more balanced for
offloading compared to ART-addr-Page, which may have
more Updates for some memory ports depending on mem-
ory access addresses.

VLP-Page. When applying VLP on top of page granular
offloading, the performance is further improved by 5–10%
for two-operand operations (sgemm and mac). For reduce,
performance is further improved by 66% for ART-tid-VLP-
Page and 76% for ART-addr-VLP-Page compared to ART-
tid-Page and ART-addr-Page, respectively, which leads to
three orders of magnitude speedup over PEI. It also implies
that the page granular offloading alone is able to sustain the
peak computation capability in the original Active-Routing
(ART-tid/addr). Moreover, vault-level parallelism can im-
prove the performance even further, especially for pure
reduction as data is local to the compute vaults. Since two-
operand operations need to have both operands from dif-
ferent vaults to be ready, even the offloaded computations
arrive in bulk, such operand waiting time fails to extract
the full VLP and achieves small improvement. Based on
this characteristic, a cost-effective design can apply VLP
only for pure reduction while keeping the two-operand
computations in cube-level as in the original Active-Routing.
In such a way, a design with one big ALU at cube-level for
all computation supports and tiny ALUs at vault-level for

pure reduction is sufficient to for performance gains, and
moreover, it can save area cost and power with big and tiny
ALUs instead of homogeneous big ALUs.

6.5 Dynamic Offloading: A Case Study

0 20 40 60 80 100 120
Phases

0

500000

1000000

1500000

2000000

2500000

C
yc

le
s

First Phase

Second Phase

ART-tid
ART-tid-Adaptive

ART-tid
ART-tid-Adaptive0.0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

Fig. 19: LUD phase analysis and dynamic offloading.

Through an example, we show that further perfor-
mance improvement can be achieved with a runtime knob
that dynamically decides whether to offload computations
(Updates) based on the memory access and communications
patterns. Execution phases that exhibit good locality of
data accesses experience performance benefits by exploit-
ing cache hits when scheduled on the host CPU. In lud,
it decomposes a matrix into upper and lower triangular
matrices. Computations for these two matrices can be sepa-
rated into two different phases, which execute alternatively
with many iterations. The first phase is to compute the
upper triangular matrix and the other to compute the lower
triangular matrix. These two phases have different locality
of data accesses. The second phase has a good data locality
since it accesses the matrix in row-major order, whereas
the first phase accesses the matrix in column-major order,
showing poor locality.

For such a program behavior, the best execution model
is to use Active-Routing for the first phase and process the
second phase in the host processor. We analyze lud’s phase
behaviors as shown in Fig. 19. In the ARTtid that always
offloads computations to memory regardless of data locality,
the number of cycles for first and second phases in each
iteration dramatically increases and decreases. However,
when we run ARTtid-adaptive in which computations of
the first phase are offloaded to the memory and that of the
second phase is processed in the host processor, we achieve
2× speedup.

7 ADDITIONAL RELATED WORK

Near-Data Processing. Recently, NDP architecture has be-
come an active research area in computer architecture [9],
[10], [12], [31]. Ahn et al. proposed a programmable PIM ac-
celerator for large-scale graph processing [9]. More recently,
Fujiki et al. [32] propose a programmable in-memory pro-
cessor architecture, and data-parallel programming frame-
work using non-volatile memory. Mondrian [11] takes an
algorithm-hardware co-design approach to sequence irreg-
ular accesses for better locality by pre-processing. Recent
study [33] discovered the data movement as the bottle-
neck for performance and energy efficiency by analyzing

HUANG et al.: COMPUTING EN-ROUTE FOR NEAR-DATA PROCESSING 13

Google workloads. While it focuses on consumer devices
and Active-Routing target for high-performance processors.
Most recently, domain-specific PIM architectures have been
designed for different applications, ranging from deep
learning [34], [35], to image processing [36], to graph pro-
cessing [37]. The coherence mechanism designed for near-
data architectures can also be applied to Active-Routing to
reduce the unnecessary coherence traffic [22].

In-Network Computing. Previous research [14], [15],
[16] has advocated interconnection networks to offer more
functionalities on top of normal switching purposes. Active
Message [14] embeds the function pointer and arguments
across the network to perform tasks in remote compute
nodes. Pfister et al. [15] and Ma [38] proposed mechanisms
to combine messages so as to reduce network traffic. Re-
cently, IncBricks [16] implements an in-network caching
middlebox for key-value acceleration in router switches.
Several studies [17], [18], [19] proposed mechanisms to
optimize shared value update or reduction in the network.
Although these mechanisms support data processing in the
network but still suffer the burden of data movement from
memory to CPU, while Active-Routing tackles this issue.
Recently, Li et al. proposed iSwitch to accelerate reduction
for distributed reinforcement learning training in param-
eter server [39]. Similar to Active-Routing, an in-network
reduction architecture has been developed to accelerate
collective reduction in multiprocessor shared memory [40].
Different from these work, Active-Routing applies to near-
data processing paradigm and also optimizes aggregation
of intermediate results of arithmetic operators, which is not
supported in these proposals.

8 CONCLUSIONS

We propose Active-Routing, an in-network computing ar-
chitecture, to enable reduction en-route in data-intensive
applications for near-data processing. Active-Routing is im-
plemented as a novel three-phase processing procedure,
which offloads the computation near data in the memory
network for execution and aggregates the results along
their routing path. We categorize memory access patterns of
compute kernels of interest and propose various offloading
granularity by exploiting data locality to reduce offloading
overhead. We further extend the original Active-Routing to
enable vault-level parallelism for computation throughput
improvement. Compared to the state-of-the-art PIM archi-
tecture, Active-Routing can achieve up to 7× speedup with a
geometric mean of 60% performance improvement and re-
duce energy-delay product by 80% on average across bench-
marks. Aggressive parallelism and offloading optimizations
show further improvements of an order of magnitude,
showing promising potential for in-network computing and
data-flow processing.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable feedback. This work was done while Jiayi
Huang, Troy Fulton, and Ramprakash Reddy Puli were with
Texas A&M University.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” in
International Conference on Neural Information Processing Systems
(NIPS). Curran Associates Inc., 2012, pp. 1097–1105. [Online].
Available: http://dl.acm.org/citation.cfm?id=2999134.2999257

[2] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “CRONO: A
Benchmark Suite for Multithreaded Graph Algorithms Executing
on Futuristic Multicores,” in International Symposium on Workload
Characterization (IISWC). IEEE Computer Society, 2015, pp. 44–55.
[Online]. Available: http://dx.doi.org/10.1109/IISWC.2015.11

[3] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in Hot Chips 23
Symposium (HCS). IEEE, 2011, pp. 1–24.

[4] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park,
J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin et al., “25.2 a 1.2 v 8gb
8-channel 128gb/s high-bandwidth memory (hbm) stacked dram
with effective microbump i/o test methods using 29nm process
and tsv,” in Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International. IEEE, 2014, pp. 432–433.

[5] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core
Processors,” in International Symposium on Computer Architecture
(ISCA), 2008, pp. 453–464.

[6] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-Centric System
Interconnect Design with Hybrid Memory Cubes,” in Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE Press, 2013, pp. 145–156.

[7] J. Zhan, I. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang, and
Y. Xie, “A Unified Memory Network Architecture for In-Memory
Computing in Commodity Servers,” in International Sympoium on
Microarchitecture (MICRO). IEEE, 2016, pp. 1–14.

[8] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw,
and R. Das, “Compute Caches,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture, HPCA 2017,
Austin, TX, USA, February 4-8, 2017, 2017, pp. 481–492.

[9] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable
Processing-in-Memory Accelerator for Parallel Graph Processing,”
in International Symposium on Computer Architecture (ISCA). IEEE,
2015, pp. 105–117.

[10] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim, “Ac-
celerating Linked-List Traversal through Near-Data Processing,”
in International Conference on Parallel Architecture and Compilation
Techniques (PACT). IEEE, 2016, pp. 113–124.

[11] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel,
B. Falsafi, B. Grot, and D. Pnevmatikatos, “The Mondrian Data
Engine,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ser. ISCA ’17, 2017, pp. 639–651.

[12] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instruc-
tions: A Low-Overhead, Locality-Aware Processing-in-Memory
Architecture,” in International Symposium on Computer Architecture
(ISCA). IEEE, 2015, pp. 336–348.

[13] J. Ahn, S. Yoo, and K. Choi, “AIM: Energy-Efficient Aggregation
inside the Memory Hierarchy,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 13, no. 4, p. 34, 2016.

[14] T. V. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Ac-
tive Messages: A Mechanism for Integrated Communication and
Computation,” in International Symposium on Computer Architecture
(ISCA). IEEE, 1992, pp. 256–266.

[15] G. F. Pfister and V. A. Norton, ““Hot Spot” Contention and Com-
bining in Multistage Interconnection Networks,” IEEE Transactions
on Computers, vol. c-34, no. 10, pp. 943–948, 1985.

[16] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,
and K. Atreya, “IncBricks: Toward In-Network Computation
with an In-Network Cache,” in International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2017, pp. 795–809. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037731

[17] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe,
L. Rudolph, and M. Snir, “The NYU Ultracomputer-Designing an
MIMD Shared Memory Parallel Computer,” IEEE Transactions on
Computers, vol. c-32, no. 2, pp. 175–189, 1983.

[18] D. K. Panda, “Global Reduction in Wormhole k-ary n-cube Net-
works with Multidestination Exchange Worms,” in International
Parallel Processing Symposium (IPPS), 1995, pp. 652–659.

[19] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow,
and J. J. Parker, “The IBM Blue Gene/Q Interconnection Network

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 6, JUNE 2021

and Message Unit,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011, pp. 1–10.

[20] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible
Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects,” in Proceedings of the Twenty-Third International Con-
ference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2018, pp. 461–475.

[21] J. Huang, R. R. Puli, P. Majumder, S. Kim, R. Boyapati, K. H. Yum,
and E. J. Kim, “Active-Routing: Compute on the Way for Near-
Data Processing,” in Proceedings of the 25th International Symposium
on High Performance Computer Architecture (HPCA-25), February
2019, pp. 674–686.

[22] A. Boroumand, S. Ghose, M. Patel, H. Hassan, B. Lucia,
R. Ausavarungnirun, K. Hsieh, N. Hajinazar, K. T. Malladi,
H. Zheng et al., “CoNDA: Efficient cache coherence support for
near-data accelerators,” in Proceedings of the 46th International Sym-
posium on Computer Architecture, 2019, pp. 629–642.

[23] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A Many-
core Simulator with Application-Level+ Simulation and Detailed
Microarchitecture Modeling,” in International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), 2013, pp. 74–85.

[24] D. I. Jeon and K. S. Chung, “CasHMC: A Cycle-Accurate Simulator
for Hybrid Memory Cube,” IEEE Computer Architecture Letters,
vol. 16, no. 1, pp. 10–13, Jan 2017.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building Cus-
tomized Program Analysis Tools with Dynamic Instrumentation,”
in ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, 2005, pp. 190–200. [Online].
Available: http://doi.acm.org/10.1145/1065010.1065034

[26] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Optimizing NUCA Organizations and Wiring Alternatives for
Large Caches with CACTI 6.0,” in International Symposium on
Microarchitecture (MICRO), 2007, pp. 3–14. [Online]. Available:
https://doi.org/10.1109/MICRO.2007.30

[27] M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H.
Loh, “There and Back Again: Optimizing the Interconnect in
Networks of Memory Cubes,” in International Symposium on
Computer Architecture (ISCA). ACM, 2017, pp. 678–690. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080251

[28] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang,
and K. Skadron, “A Characterization of the Rodinia Benchmark
Suite with Comparison to Contemporary CMP Workloads,” in
IEEE International Symposium on Workload Characterization (IISWC).
IEEE Computer Society, 2010, pp. 1–11. [Online]. Available:
http://dx.doi.org/10.1109/IISWC.2010.5650274

[29] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford
Large Network Dataset Collection,” Available from
http://snap.stanford.edu/data, Jun. 2014.

[30] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Com-
puting,” University of Illinois at Urbana-Champaign, Tech. Rep.,
March 2012.

[31] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit:
In-Memory Accelerator for Bulk Bitwise Operations Using
Commodity DRAM Technology,” in International Symposium on
Microarchitecture (MICRO). ACM, 2017, pp. 273–287. [Online].
Available: http://doi.acm.org/10.1145/3123939.3124544

[32] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel pro-
cessor,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2018, pp. 1–14.

[33] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu,
R. Thakur, D. Kim, A. Kuusela, A. Knies, P. Ranganathan et al.,
“Google workloads for consumer devices: mitigating data move-
ment bottlenecks,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2018, pp. 316–331.

[34] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li,
B. Maher, D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy,
X. Wang, B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang, “Rec-
NMP: Accelerating Personalized Recommendation with Near-
Memory Processing,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), 2020, pp. 790–803.

[35] W. Li, P. Xu, Y. Zhao, H. Li, Y. Xie, and Y. Lin, “TIMELY: Pushing
Data Movements and Interfaces in PIM Accelerators Towards
Local and in Time Domain,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 832–845.

[36] P. Gu, X. Xie, Y. Ding, G. Chen, W. Zhang, D. Niu, and Y. Xie,
“iPIM: Programmable In-Memory Image Processing Accelerator
Using Near-Bank Architecture,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 804–817.

[37] Y. Zhuo, C. Wang, M. Zhang, R. Wang, D. Niu, Y. Wang, and
X. Qian, “GraphQ: Scalable PIM-based Graph Processing,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 712–725.

[38] S. Ma, N. E. Jerger, and Z. Wang, “Supporting Efficient Collective
Communication in NoCs,” in High Performance Computer Architec-
ture (HPCA). IEEE, 2012, pp. 1–12.

[39] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang,
“Accelerating Distributed Reinforcement Learning with In-Switch
Computing,” in 2019 ACM/IEEE 46th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 2019, pp. 279–291.

[40] B. Klenk, N. Jiang, G. Thorson, and L. Dennison, “An In-Network
Architecture for Accelerating Shared-Memory Multiprocessor Col-
lectives,” in 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2020, pp. 996–1009.

Jiayi Huang (Member, IEEE) received the BEng
degree in information and communication engi-
neering from Zhejiang University, China, in 2014,
and the PhD degree in computer engineering
from Texas A&M University, in 2020. He is cur-
rently a postdoctoral researcher with the Depart-
ment of Electrical and Computer Engineering,
UC Santa Barbara. His research interests in-
clude computer architecture and systems, with
a special focus on communication/data-centric
and heterogeneous architecture. He is a mem-

ber of ACM and IEEE Computer Society.

Pritam Majumder received the BTech degree in
computer science and engineering from WBUT
India, in 2011, and the MS degree in computer
science and engineering from Indian Institute
of Technology, Madras, in 2015. He is working
toward the Ph.D. degree with the Department
of Computer Science and Engineering, Texas
A&M University. His research interests include
the fields of computer architecture, systems, and
machine learning. He is a student member of
ACM.

Sungkeun Kim received the BEng degree in
computer science and engineering from Kyung-
pook National University, Republic of Korea, in
2011. He is working toward the PhD degree with
the Department of Computer Science and En-
gineering, Texas A&M University. His research
interests include computer architecture and sys-
tems, focusing on networks-on-chip, memory
systems and near-data processing, and hard-
ware security. Before starting a Ph.D., he worked
as a software engineer at Samsung Electronics,

Suwon, Republic Korea.

Troy Fulton received the BS degree in computer
science from Texas A&M University, in 2020,
where he participated with the Undergraduate
Research Scholars Program and completed his
thesis on parallelizing In-Memory Computations
for Active-Routing. He currently works as a soft-
ware engineer at Aspen Insights, LLC, a com-
pany focused on applying artificial intelligence
to improve clinical research in healthcare. His
research interests include computer architecture
and compiler design.

HUANG et al.: COMPUTING EN-ROUTE FOR NEAR-DATA PROCESSING 15

Ramprakash Reddy Puli received the BTech
degree in electrical engineering from Indian In-
stitute of Technology, Kharagpur, India, in 2014,
and the MS degree in computer engineering
from Texas A&M University, in 2018. He cur-
rently works as a Sr. Architect at Nvidia to en-
able next generation high bandwidth memory
architectures for GPUs. His research interests
include computer architecture, high performance
computing, and DRAM technologies.

Ki Hwan Yum (Member, IEEE) received the
BS degree in mathematics from Seoul National
University, Korea, in 1989, the MS degree in
computer science and engineering from Pohang
University of Science and Technology, Korea, in
1994, and the PhD degree in computer science
and engineering from the Pennsylvania State
University in 2002. From 1994 to 1997, he was a
member of Technical Staff in Korea Telecom Re-
search and Development Group. He is currently
a research assistant professor in the Department

of Computer Science and Engineering, Texas A&M University. His re-
search interests include computer architecture, parallel/distributed sys-
tems, cluster computing, and performance evaluation. He is a member
of IEEE Computer Society and ACM.

Eun Jung Kim (Member, IEEE) received the BS
degree in computer science from KAIST, Korea,
the MS degree in computer science from Pohang
University of Science and Technology, Korea,
and the PhD degree from the Department of
Computer Science and Engineering, Pennsylva-
nia State University. She is an associate profes-
sor with the Department of Computer Science
and Engineering, Texas A&M University. Her re-
search interests include computer architecture,
power efficient systems, parallel/distributed sys-

tems, cluster computing, security, and sensor network. She worked as
a member of technical staff in Korea Telecom for three years. She
is a member of IEEE Computer Society. More information about her
research is available at http://faculty.cse.tamu.edu/ejkim.

