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Abstract— Ever increasing performance demand and shrinking in the transistor size together result in complex and dense packing in
large chips. That motivates designers to opt for many small specialized hardware modules in a chip to extract maximum performance
benefits with relatively lower complexity and cost. These altogether opens up new directions for heterogeneous modular
System-on-Chip (SoC) research, where a large system is built by assembling small independently designed chiplets (small chips). We
focus on the communication aspect of such SoCs, especially newly observed deadlock among chiplets. Even though deadlock is a
classic problem in networks and many solutions are available, the modular SoC design demands customized solutions that preserves
the design flexibility for chiplet designers. We propose Remote Control (RC), a simple routing oblivious deadlock avoidance scheme
based on selective injection-control mechanism. Along with guarantee on deadlock freedom, RC aims to provide a methodology to
make each independently designed chiplet seamlessly integrate in any modular SoCs. We achieve up to 56.34% throughput and
15.49% zero load latency improvements on synthetic traffic and up to 20% on real workloads taken from vast range of benchmark
suites, over the state-of-the-art turn restriction based technique applied in modular SoC domain.

Index Terms—network deadlock, modular SoC, boundary router, inbound and outbound traffic, injection control.
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1 INTRODUCTION

With the advancements in silicon technology, Systems-on-
Chip (SoCs) are becoming more complex and expensive,
which motivates the designers to break the whole SoC into
multiple small independent chiplets for reducing design cost
and achieve better scalability. The modular design of SoCs
using 2.5D integration technology is a total paradigm shift
from the monolithic SoC design to the hierarchical SoC de-
sign [1]–[3]. It allows to design smaller independent chiplets
such as CPU, GPU, and accelerators with low cost and com-
plexity, and integrate them together on an interposer, creat-
ing heterogeneous chiplet-based architectures. The chiplet-
based design also increases the usability of chiplets in differ-
ent SoCs and provides flexibility for vendors to manufacture
using any desired process technology. In this paper, we use
modular SoCs and chiplet-based systems interchangeably.

One of the major concerns in any network-based sys-
tem is deadlock due to cyclic hold-and-wait among vir-
tual channels (VCs) [4]. Since chiplets are designed inde-
pendently, their integration on an interposer brings new
challenges to provide correctness validation. Connecting
several deadlock-free NoCs together in a modular SoC may
introduce a new kind of deadlock formed among different
chiplets, as they are oblivious to each other’s routing algo-
rithm [5].

There have been many studies that address deadlock
issues in conventional interconnection networks [4], [6]–
[10]. Conventional deadlock avoidance techniques cannot
be applied directly to modular SoCs, as they consider the
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whole SoC as a single network, which violates the fun-
damental modularity principle of the chiplet-based system
design. Keeping the design modularity in mind, recently Yin
et al. [5] propose Modular Turn Restriction (MTR), which
imposes extra turn restrictions on the boundary routers
of chiplets to avoid deadlocks in modular SoCs. MTR is
easy to implement in hardware but needs changes in both
chiplet routing and SoC routing. In addition, because of the
skewed turn restrictions, this approach can lead to load im-
balance and create several hotspots, which are detrimental
for network throughput. From this work we notice that the
boundary routers are playing a major role in inter-chiplet
deadlocks.

We exploit two key insights regarding deadlocks in
modular SoCs for providing a solution that works with any
chiplet routing. First, outbound packets (going out of the
chiplet) may block inbound (going inside a chiplet from
outside) and intra-chiplet (source and destination in the
same chiplet) packets to reach destinations. The other key
observation is that packets involved in a deadlock cross the
boundary of the chiplets through a set of specific boundary
routers1. Since the chiplets and interposer have independent
deadlock free routing techniques, a deadlock is not possible
in each of them separately, meaning it must involve both.
Based on MTR and our observations, we pin-point the
reason for this newly evolved deadlock among the chiplets
in the modular SoC design. So we propose Remote Control
(RC), which is specific and highly optimized to solve this
deadlock issue with minimum cost. It is also generalized
enough to be applicable to chiplets with any kind of net-
work, and SoC with any kind of chiplets connected in any

1. Boundary Router: Chiplet routers that are connected with inter-
poser router.
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topology with corresponding routing.
In Figure 1, we draw a real-life analogy with a road

situation, where the highway is considered as part of the
interposer network and city roads are considered as part
of the chiplet network. Cars moving from city to highway
are considered as outbound cars. The ramp in between the
highway and the city roads is analogous to the existing
output buffer (we named it as rc buffer) in the boundary
router. In Figure 1(a) it is clear that if all the outbound
cars cannot be accommodated in the ramp, it may result
in a deadlock. Therefore, we must get reservation for ramp
(rc buffer) before getting down to city roads as shown in
Figure 1(b) to avoid a deadlock. That means at any point
there will be only those many outbound cars on the city
road, which can be accommodated in the ramp between the
city road and highway. We assume that the highway and
city roads do not fall in deadlock if they operate in isolation.
Hence we propose RC to control the injection of outbound
packets to ensure isolation of these two types of traffic. The
main contributions of our paper are as follows.

• We tackle an emerging problem of deadlock in
chiplet-based systems using Remote Control. We aim
to provide better design flexibility to both the chiplet
and SoC designers, so that chiplet designers can
exercise their expertise to fully optimize the chiplet
performance. To the best of our knowledge, this is the
first work that uses injection control based technique
to guarantee deadlock freedom in the modular SoC
design domain.

• We apply conventional deadlock avoidance tech-
niques successfully in Modular SoC and analyze
comprehensively to provide consolidated compari-
son. We observe that even after our best effort to
make them efficient in the modular SoC, they are
not able to exhibit desired performance. Hence, to
overcome their limitations, considering several as-
pects together, we show that our solution is the most
efficient in this context.

• We formally prove that RC guarantees deadlock free-
dom in modular SoC using an illustrative general-
ized example.

• Along with the theoretical proof, we also validate
the design in terms of energy, area, and timing con-
straints through RTL. We evaluate the SoC network
performance using a network simulator and provide
system performance results using full system simula-
tions for both homogeneous (only CPUs) and hetero-
geneous (CPU and GPU) system configurations. We
achieve up to 56.34% throughput and 15.49% zero
load latency improvements, respectively, over state-
of-the-art MTR.

The rest of the paper is organized as follows. In Section 2,
we briefly describe the background, and motivations for RC
are explained in Section 3. Then we introduce a theory and
its formal proof in Section 4, followed by the discussion
on implementation challenges. In Section 5, the RC im-
plementation is presented. We discuss the experimentation
methodology in Section 6 and show the effectiveness of RC
compared to MTR in Section 7. We discuss previous work
on network deadlock applied in different types of networks

DEADLOCK

Reason for 
deadlock

ramp

Highway Highway 

(a) (b)

City roads City roads

Outbound traffic inbound
traffic

Fig. 1: Analogy with a Road Situation. (a) Traffic is forming deadlock
involving both highway and city-road traffic because of mutual block-
ing. (b) Once we make sure that all the highway-bound cars can stay
in the ramp, until they get a space in highway, deadlock freedom is
guaranteed. Note that in this case (also in out inter-chiplet deadlock)
traffic isolation is enough to avoid deadlock, as highway and city-roads
are deadlock free.

in Section 8. Finally, we state our conclusions and discuss
future work in Section 9.

2 BACKGROUND

In this section, we first introduce the modular SoC design
concept and 2.5D silicon interposer technology, as an im-
portant and elegant way of system scalability for perfor-
mance boost. However, integrating independently designed
chiplets introduces network deadlock, involving multiple
chiplets. We study MTR and two possible conventional
ways that can be applied for tackling that issue, followed
by a discussion on the limitations of existing mechanisms as
motivation for our work.

2.1 Modular 2.5D SoC Integration

Modularity has been advocated as a new design principle to
reduce the complexity and cost of the SoC design. An SoC
is called modular if all the chiplets on that SoC are designed
independently. Contemporary multi-chiplet SoC integration
uses a passive silicon interposer [11], where the only way
to make connections between chiplets is to make fixed wire
connections.

In a passive interposer, dedicated wire connections
are required from a chiplet to connect with different
chiplets [12]. This may lead to long wire usage with multiple
repeaters and a huge number of dedicated communication
channels, making it hard to scale in terms of area and energy.
In addition, the channels in a passive interposer should
be standardized for the modular SoC design. Hence, there
has been an increase in research of active interposers [2],
[13], [14] both in industry and academia. We also consider
an active interposer substrate for designing the interposer
network.

Active interposer facilitates interconnection between the
chiplets [12], [15], [16] by adopting the router design in the
silicon substrate, which is more area-and energy-efficient.
The integration process is generally known as 2.5D inte-
gration, featuring a silicon interposer. It is placed between
the System-in-Package (SiP) substrate and the dice, where
this silicon interposer has Through-Silicon-Vias (TSVs) con-
necting the metalization layers on its upper and lower
surfaces [16].
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2.2 Deadlock Freedom in Modular SoC

2.2.1 Modular Turn Restriction (MTR)
Based on the principle of turn restrictions [17], recently,
Yin et al. [5] propose a deadlock-free routing algorithm for
modular SoC. As the best of our knowledge, this is the only
work on modular SoC deadlock freedom so far. At design
time, MTR finds the optimal placement and turn restrictions
for boundary routers of each chiplet independently with
the help of Channel Dependency Graph (CDG) analysis.
The turn restrictions are applicable to both the packets that
go out from the chiplet (outbound packets) as well as to the
packets that reach from other chiplets (inbound packets). Once
the list of turn restrictions is obtained, MTR applies the turn
restrictions in the chiplet routing, which are applicable only
for the outbound packets. For imposing turn restriction on
the inbound packets, interposer routing also needs to be
modified, which imposes constraint on the SoC designers
and increases design complexity.

2.2.2 VC Separation (VC-SEP)
The idea of VC separation is widely applied to avoid proto-
col deadlock as well as routing deadlock based on Duato’s
theory [18]. We showcase it as a potential solution for SoC
deadlock since it is a natural fit for this particular problem.
The traffic in the Modular SoC can be categorized into two.
(1) Inter-chiplet: traffic of packets which do not have destina-
tions in the source chiplet. (2) Intra-chiplet: traffic of packets
having both sources and destinations in the same chiplet.
Without any constraint on the area, cost and energy, VC-
SEP naturally segregates two different traffic by providing
two different virtual networks throughout the system. For
outbound packets, we allocate first half of the total set of
VCs, and other set of VCs are being allocated for inbound
packets and all the intra-chiplet packets.

2.2.3 In-Transit Buffer (ITB)
The idea of ITB is originally used by Flich et al. to avoid
deadlocks in irregular networks and later extended for off-
chip networks in the cluster of workstations [10]. Here, we
adopt the idea of ITB and apply in the Modular SoC to
avoid deadlocks. ITB uses the Network Interface Card (NIC)
memory as an in-transit buffer in some pre-decided nodes.
Those special nodes are being selected after CDG analysis
as deadlock breaking points. Any packet that reaches to
those nodes are forced to eject in that node. Using DMA,
the whole packet is stored in the NIC memory. In case
the NIC memory gets exhausted, the packet is dropped
and a NACK packet is being generated and sent to the
source node for re-transmission. This process continues till
the packet is ejected successfully in that special node. If
the packet is successfully stored in NIC memory, the NIC
sends an ACK message to the source node. To port this idea
in the Modular SoC, we consider the boundary routers as
special nodes and use the Network Interface (NI) connected
to boundary routers to place ITB, a small buffer to store
packets (no DMA) in the similar way described above. The
ejection and reinjection in some special nodes (boundary
routers) break the circular channel dependency chain and
hence avoid deadlocks. By using domain specific knowledge
we further optimize the performance of this implementation

Modularity Design Efficiency Energy Efficiency Performance
MTR + + + ++ + + + +

VC-SEP −− ++ −−− −
ITB + + + −− −− ++
RC + + + + + + + + + + + +

TABLE 1: Qualitative Comparison with Different Deadlock Avoidance
Techniques for Modular SoC. (+) means high and (−) means low. We
project the degree of high and low efficiency with number of (+) or
(−), respectively.

by doing ejection-injection only when a packet is outbound.
Please note that we made necessary changes to the original
implementation for accommodating the idea of ITB into the
modular SoC context.

3 MOTIVATIONS FOR RC
Limitations in the existing techniques discussed in Section 2
motivates us to find a better solution. State-of-the-art MTR
identifies an important emerging problem and provides a
solution. However, MTR has a few limitations. The major
constrain in MTR is that it forces the chiplet designers to
implement turn restrictive routing to guarantee deadlock
freedom in the modular SoC, which is the main motivation
of RC. In addition, extra turn restrictions can lead to non-
minimal path for intra- and inter-chiplet traffic. Also, the
turn restrictions obtained by MTR does not balance the
turn restrictions among the boundaries well. Hence, a few
boundary routers get huge inter-chiplet traffic load while
others do not, causing several hotspots in the system. MTR
also constrains the routing design and incurs design over-
head. The complexity of the CDG analysis, which is the
core of this technique, grows exponentially with the increase
in the number of chiplet routers and boundary routers,
which unnecessarily elongates the design cycle. Moreover,
MTR imposes restrictions on interposer routing to restrict
the inbound packets route, which increases system network
design complexity and traffic contention further.

VC-SEP is a well known technique for avoiding dead-
lock. The main drawback of this approach is that it is very
expensive in terms of energy and area consumption. In
addition, the buffer utilization is low, which leads to sub-
optimal performance. Hence, even though this solution is
fairly simple, it is not attractive for designing cost-effective
and high throughput modular SoC. Hence, we use the idea
of traffic isolation and come up with more efficient imple-
mentation by adopting remote injection control mechanism
with small buffer.

ITB could be a promising solution for deadlock problems
in Modular SoC. However, it has two major drawbacks in
this context. (1) Dropping a packet in on-chip reliable net-
work introduces unnecessary complexity and overhead. (2)
Ejection and reinjection in multiple nodes increases overall
hop counts as well as average packet latency. Furthermore,
due to packet dropping/reinjection and use of ACK/NACK
packets, the overall system throughput suffers. In principle
RC is different than this solution as RC does not rely on
ejection and reinjection for deadlock freedom. In fact, RC
ensures deadlock freedom just by isolating two types of
traffics in the system, which is inspired by the VC-SEP idea.

In Table 1, we summarize the comparisons of these
techniques and project the expectation of Remote Control,
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Fig. 2: An example of deadlock, formed in between two (4×4) mesh chiplets, and how RC can avoid the deadlock. (a) Packets P1 (blue solid
line) and P2 (red dashed line) forming deadlock. (b) rc_buffer in the boundary routers store outbound packets. (c) RC avoids the deadlock by
allowing all the outbound packets to be stored in the boundary routers until they get credit from downstream interposer routers.

which aims for improving the limiting aspects of exist-
ing solutions. In a nutshell, the goal of RC is to provide
routing design flexibility and eliminate unnecessary packet
dropping incurring packet re-transmission by introducing
a flow control based technique. Additionally, RC targets to
save energy and area by segregating traffic only in chiplet
boundary routers.

4 REMOTE CONTROL

RC is a deadlock avoidance solution for modular SoC,
implemented using injection control imposed on outbound
packets from nodes connected to non-boundary chiplet-
routers. Since outbound packets get consumed in other
chiplets, to avoid cross-chiplet deadlocks, we provide inter-
mediate sink (rc buffer) for outbound packets in the bound-
ary routers. Therefore, outbound packets are drained to
rc buffer so that they release the chiplet VC buffers to be
used by intra-chiplet and inbound packets. If all the chiplets
follow the same, intra-chiplet and inbound packets are
never indefinitely blocked by outbound packets, and in turn
outbound packets can also make progress, as an outbound
packet for one chiplet is an inbound for other chiplet. In this
section, we first walk through a simple practical example to
show a case of deadlock formation between two chiplets and
how RC can solve it. Then we generalize it for any chiplet-
based systems and theoretically prove that RC guarantees
deadlock freedom in Modular SoCs.

4.1 Deadlock in Modular SoC
Figure 2a shows a deadlock case in a modular SoC, where
two (4×4) 2D mesh chiplets are connected through an
interposer. We denote router i on chiplet j as R-i/C-j for
simplicity, where chiplet-0 is on the left and chiplet-1 is on
the right. In this system, R-2/C-0, R-14/C-0, R-1/C-1 and
R-13/C-1 are boundary routers connected to the interposer
network. Packets P1 and P2 are two outbound packets in
a circular hold-and-wait situation, forming a deadlock. The
P2-head flit in R-10/C-0 requests for the south VC of R-
6/C-0, which is held by packet P1. On the other hand, P1-
head flit in R-5/C-1 requests for the north VC of R-9/C-1,
which is taken by P2. Such a case creates a circular hold-
and-wait situation and forms a deadlock, where neither P1
nor P2 can make forward progress2. To avoid deadlock in

2. Progress/forward-progress means moving near to the destination.

this scenario MTR may impose turn restriction from R-6/C-
0 to I-0 through R-2/C-0, increasing pressure on the other
boundary of C-0 for outbound traffic. Note that MTR needs
to impose more turn restrictions to avoid all other possible
circular hold-and-wait scenarios.

4.2 Deadlock Avoidance using RC
As shown in Figure 2a, an outbound packet P1 in C-0
is blocking P2 packet to reach its destination while P2 is
blocking P1 in C-1. RC separates outbound packets from
others in the boundary router, and allows them to be stored
completely in the rc buffer until they get credits from the
downstream interposer router. This makes sure that the
chiplet VCs will get free in a bounded time, after the header
flit reaches at rc buffer. Hence, P1 will release all the VCs
currently blocked in C-0 and so does P2 in C-1. That is why
with RC the circular channel dependency among chiplets
will never result in deadlock.

4.3 Deadlock Freedom
We propose the theoretical support for RC. The rc buffer
reservation is atomic for each of the requesters and allows
only one outstanding rc-request per requester at any point of
time. The request for a slot in the rc buffer for any outbound
packet is granted only when there is space for the whole
packet, and the slot is reserved. The slot is released once
the tail flit leaves the rc buffer and then only a new request
is granted. We define one rule and two definitions to keep
our theorem statement concise. We layout the proof of the
theorem by contradiction, starting by assuming that there is
a deadlock.

Injection Rule: An outbound packet can be injected from
NI to its attached router if and only if the rc-request is
granted.

Definition-1: Inflight outbound packet is the packet whose
source and destination are in different chiplets, and holds
at least one VC in one chiplet-router. Note that once the
outbound packet leaves its source chiplet, it is considered as
inbound packet for its destination chiplet.

Definition-2: Destination boundary router is a chiplet-
router used by a set of nodes/routers in the chiplet as a gate-
way to communicate between the chiplet and interposer.
Any communication between these nodes/routers in the
chiplet and interposer happen only through their destination
boundary router.
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Fig. 3: Remote Control: (a) Permission network consists multiple outbound packet injection control (OPIC) blocks connected in a tree fashion.
Each router has one OPIC block. (b) One OPIC tree, and each edge is 2-bit request and response line. (c) Boundary router with the newly added
components marked with gray. Note that the router attached to a non-boundary node does not have RCVA and RCB. (d) The changes in NI of the
non-boundary router marked in gray. There is no change in NI attached to boundary routers.

Theorem: The SoC network is guaranteed to be deadlock free
as long as all the outbound packets reserve slots in rc buffer in the
destination boundary router before injection (Injection Rule).

Proof: We define the network system (S) at any instant
T as ST = {Q | Q = {λ, β}, λ ⊆ PT , β is the set of all the
buffers reserved by packets in λ and β ⊆ B}, B is the set
of total buffers in the system (independent of T ) and PT is
the set of total packets in the system at an instant T . Let us
assume there exists an i such that Qi = {λi, βi} ∈ Q forms
a deadlock. Let B denote a set of buffers in all the boundary
routers in the SoC system and ρ denote the set of inflight
outbound packets. We categorize all possible scenarios into
four cases as follows and prove that RC avoids deadlock
for any modular SoC network by contradicting our initial
assumption that Qi is in deadlock.

i f βi
⋂

B == Ø :
− c o n t r a d i c t i o n ; //no deadlock . . . . . . . . . . . . . . . . ( 1 )

e l s e :
i f λi

⋂
ρ == Ø :

− c o n t r a d i c t i o n ; //no deadlock . . . . . . . . . . . . . . ( 2 )
e l s e :

i f ∀ ρx ∈ (λi
⋂
ρ) ∃ s l o t in r c b u f f e r :

− c o n t r a d i c t i o n ; //no deadlock . . . . . . . . . . . . ( 3 )
e l s e :

− v i o l a t i o n ( I n j e c t i o n Rule ) ;// no deadlock . ( 4 )

(1) If there is no boundary router buffer involved, that
means the deadlock is formed only inside a chiplet or in the
interposer, but not involving both. Since a chiplet and the
interposer use their own deadlock free routing logic, it is
impossible to form deadlock without involving both, which
contradicts our initial assumption of Qi being in deadlock.
(2) If there is no inflight outbound packet involved in Qi,
the circular deadlock chain is incomplete as the packets in
λi are either intra (source and destination in the same chiplet
and chiplet routing is deadlock free) or inbound (outbound
packet that left its source chiplet as in Definition-1, so cannot
connect with its source in the deadlock chain). So there
cannot be any deadlock in Qi.
(3) If the Injection Rule is followed by each chiplet, then
rc buffer will let all the inflight outbound packets to sink in
there, allowing intra and inbound packets to reach their des-
tinations following deadlock-free chiplet/interposer rout-
ing. This in turn allows outbound packets to leave their
source chiplets and become inbound for their destination
chiplets (Definition-1). In addition, deadlock-free chiplet
routing guarantees that all the outbound packets reach their
destination boundary routers in the source chiplets. There
cannot be any deadlock as long as all the packets (intra and

inbound) reach their destinations. Therefore, Qi cannot be
in deadlock.
(4) If any inflight outbound packet ρx in λi that has no
rc buffer slot reserved in the boundary router, it violates RC’s
Injection Rule that all the outbound packets MUST reserve
a slot in rc buffer before injection (Injection Rule). Therefore,
this situation cannot happen. Hence RC provides guarantee
in deadlock freedom for modular SoCs.

4.4 Challenges
There are several implementation challenges RC may face.
(1) Remote injection control implementation needs to estab-
lish an extra channel of communication, which may look
structurally similar to the credit channel. The challenging
part is to keep the communication overhead as minimum as
possible. (2) The rc buffer, situated in the boundary router
needs to allow all the inflight outbound packets to be
drained from the router VCs. In conventional system, a
packet leaves the VC from the upstream router only when
the VC in the downstream router has been reserved and the
router switch is allocated. Whereas RC requires the packets
to be drained irrespective of the success in the conventional
VC allocation in the boundary router. (3) The rc buffer is
common for all types of packets, and hence it might suffer
from fragmentation if not taken care properly for different
packet sizes.

4.5 Routing Oblivious Design
RC is oblivious to both the chiplet routing and the inter-
poser routing. The boundary routers are considered as local
destinations for outbound packets in a chiplet. Hence, any
routing technique can be used to reach to the boundary
routers. Through a boundary router an outbound packet
reaches a downstream interposer router, and it follows the
interposer routing to reach another local destination in the
interposer. Since the interposer takes care of the communi-
cation between two chiplets, one inter-chiplet packet only
traverses through its source and destination chiplets. Once
the packet enters its destination chiplet, it follows the chiplet
routing to reach its destination node.

5 IMPLEMENTATION

Is this section, we first discuss one possible implementation
of rc buffer (RCB) along with a supporting protocol called
RC virtual channel allocation (RCVA). Then, we build a
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permission network connecting outbound packet injection
control (OPIC) blocks. Our goal is to achieve deadlock
freedom with complete routing flexibility both in the chiplet
and in the system backbone network.

5.1 Boundary Routers
Each boundary router has three new components, RCVA,
RCB, and OPIC as shown in Figure 3 (c). In RC, RCVA
protocol helps to operate the rc buffer, while the permission
network built by connecting OPIC blocks transports per-
mission requests and responses to and from the rc buffer.
Altogether, they establish a fine control over the outbound
packet injection and its safe transmission to rc buffer to
achieve deadlock freedom by alleviating mutual blocking
among different traffic types.

5.1.1 RCVA
RCVA implements two functionalities. First, it makes sure
the outbound packets injected from non-boundary routers
do not participate in VC allocation (VA) in the boundary
router but directly do switch allocation as shown in Figure 4.
We bypass the VA stage of the router to save its latency, and
when switch allocation is successful, the packet reaches the
output port through the crossbar. Then, we push the packet
in the reserved slot in RCB.

Second, in each cycle RCVA checks if there is any can-
didate waiting in RCB for VC allocation. The VC allocation
logic in RCVA is much simpler and straightforward than
that in the VA, as RCVA deals with only one port. Moreover,
since RCB collects all the outbound packets from all the
input VCs, VA does not deal with the outport that connects
the downstream interposer router. Hence, RCVA does not
increase the number of stages in the router for any pack-
ets. For outbound packets we consider a different router
pipeline, which has same number of router stages as in the
normal router as shown in Figure 4.

5.1.2 RCB
RCB is a very small buffer located between the crossbar
switch and link to the downstream router. It has one or
more slots for packets. If the head flit of a packet is written
in the first half of a cycle, it may be considered for VC
allocation in the other half of the cycle by RCVA. RCB
reserves a space when a request arrives from the OPIC
block, and allocates one of the empty reserved slots to a
packet when its head flit arrives. Flits leave RCB when credit
is available for downstream VC buffer. The slot is freed once
the tail flit leaves from RCB. To handle different packet sizes
efficiently, maximum packet size is being reserved in RCB
after receiving request, and once the head flit arrives, we
allocate exact number of slots as needed.
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5.1.3 Permission Network

In this section the basic building block (OPIC) of the per-
mission network is explained, followed by the procedure for
building the permission network, maintaining transparency
with the chiplet network.

OPIC block: As the name suggests, this block is respon-
sible for regulating the injection of outbound packets in the
chiplet through its customized permission network. Each of
the blocks supports send-and-receive functionality for both
permission requests and responses. In Figure 5 we divide
the OPIC into smaller blocks, and place them in the timeline
with respect to the clock. In the beginning of the clock all the
requests and responses reached in the last cycle are regis-
tered in separate registers for each connecting OPIC blocks.
Those registers are read asynchronously and based on the
available permissions, responses are sent to requesters in a
Round Robin (RR) fashion after processing their requests
using combination circuits; after that, remaining requests
and responses are also calculated. Again in the next clock,
total requests and responses are being registered and the
same process continues.

Network: We explain the permission network building
process in Algorithm 1 with an example. The chiplet net-
work topology and set of boundary routers being the
inputs, this permission network building process can be
demonstrated in general for any chiplet topology and any
number or positions of boundary routers. In the example,
the input topology is provided for an 8×8 mesh in the
form of adjacency matrix, along with boundary router set
that contains node numbers 2, 5, 58 and 61. Depending on
the technology size, chiplet designers can decide the wire-
length for the OPIC block connections (it is a hardware
deployment concern, so not included in the algorithm),
which may result into different tree depths. The number
of permission trees is equal to the number of boundary
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Input : Adjacency matrix ADJ of size N ×N
Input : Boundary router list BDRL of size K
Input : Node list NODELIST of size N
Output : list of OPIC trees (TREES)

1 // initialize the variables;
Vector : TREES; // list of OPIC trees;
Variable: num trees = # boundary routers;
Variable: all visited = false;

2 // initialize one tree for each boundary router;
3 for i← 0 to num trees do

Variable: root = BDRL[i];
4 TREES.push back(root); // pushed the root of tree;
5 end
6 // keep looping until the node list becomes empty;
7 while all visited == false do
8 // check for each tree;
9 for t← 0 to num trees do

Variable: cur tree size = TREES[t].size();
10 // try to add neighbors for each tree node;
11 for node← 0 to cur tree size do

Variable: target node = TREES[t][node];
12 // check for all neighbors of the target node;
13 for a← 0 to ADJ[target node].size() do

Variable: nbr = ADJ[target node][a];
14 // checking if neighbor of the target node is there

in the node list;
Variable: inList, index, boundary =

FindInNodeList (nbr);
15 if inList == true then
16 if boundary==false then
17 // adding node to the OPIC tree;
18 TREES.push back(nbr);
19 end
20 // removing the node from node list;
21 NODELIST.erase(index);
22 if NODELIST.empty() then
23 all visited = true;
24 end
25 end
26 end
27 end
28 end
29 end

Algorithm 1: Build Permission Network

routers in the chiplet. OPIC block in node-2 connects with
OPIC block in nodes-0, 1, 3, 9, 10, 11, 18 using request and
response lines of width 2-bit each in a n-ary tree. Similarly,
node-0 is connected with nodes-8, 16 with the request and
response lines, and so on.

For instance, at any cycle t, node-8 and node-27 want
to inject outbound packets, the requests will be registered in
node-0 and node-11 at the beginning of t+1, respectively. At
t+2 the requests from node-0 and node-11 will be registered
in node-2. Let us suppose the rc buffer does not have a space,
in that case the requests will be standby in these nodes. Now
suppose at cycle T one packet space gets free in rc buffer and
depending on the arbitration one of these two will get the
response at T + 1. Suppose node-0 gets the response, then
at cycle T + 2 node-8 will get the permission to inject an
outbound packet.

5.2 Non-boundary Routers
In a non-boundary router, we append a control on injection
process, which allows all the intra-chiplet packets to go
without any check. Only for inter-chiplet traffic, the mod-
ified injection system checks for injection permission from
a local OPIC block. In Figure 3 (d), we show that if the
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Fig. 7: SoC viewed from different angles. (a) Shows the top view of the
SoC. There are four GPU chiplet (4× 4 mesh) at the four corners, and
a CPU chiplet (2× 2 mesh) in the center. DRAM memory is connected
with edge interposer routers. (b) 3D view of the same SoC, highlighting
the interposer router, boundary router, and TSV that connects them.
It also show the active interposer, and the mesh network in the
interposer. (c) Microscopic cross-section view of SoC highlighting the
micro-architectural details of 2.5D SoC integration on active interposer.

permission is not there, the outbound packet is not injected
and a request for permission is sent by the local OPIC block
to the remote OPIC block in the boundary router through
the permission network. Once the response reaches, the
outbound packet is injected. Hence, it may happen that if
the outbound packet does not get permission to inject, it can
block intra-chiplet packets. A separate injection queue for
outbound packets in the non-boundary routers may solve
the issue. The pros and cons of adding an extra injection
queue are discussed as follows.

5.2.1 Separate Injection Queue
We consider the separation of injection queues in the non-
boundary routers as a design choice for the following rea-
sons. The advantage of having a separate queue can be
exploited only if (1) the VC is abundantly available for
injection in the router, (2) the workload is very unevenly
distributed among chiplets. For instance, in a hypothetical
situation with two chiplets, where one chiplet has huge
intra-chiplet traffic and huge congestion inside the chiplet,
and the other chiplet has a few outbound packets. Those
outbound packets may block the intra-chiplet packets in the
injection queue for a long time.

In case the number of VC buffers is low/minimal, un-
availability of the VCs becomes the bottleneck and injection
queue separation turns to be almost irrelevant. So in our
general design, we do not consider an extra injection queue
for the outbound packets as it increases the NI design
complexity significantly.

5.3 Case Study: Modular CPU-GPU Integration Using
Silicon Interposer

To check the feasibility of our design, we conduct a thorough
case study on simple heterogeneous system comprised of
four GPU chiplets (16-PEs/GPU, 32-SIMD/PE) and one
CPU chiplet (4-cores) [5]. The first challenge we face is to
equip the network of each chiplet with RC independently.
In non-boundary routers the area overhead of OPIC is less
than 0.2%. However, in boundary routers area overhead is
almost 1.6% over the router area, including rc buffer of depth
8 packets, while the overhead on the NI is negligible. In
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the established permission network, we ensure the setup
and hold time has sufficient slack for both requests and re-
sponses between the OPIC blocks. The permission network
works independent of the chiplet network, operating with
the same 2GHz frequency as that of the chiplet network.

Once the chiplets are equipped independently with RC,
they are ready to be integrated in an SoC using 2.5D active
interposer as shown in Figure 7. In this SoC, the interposer
provides a (4×4) mesh network for inter-chiplet communi-
cation. Since in the interposer network, edge routers are con-
nected with DRAM memory, memory controllers are con-
nected with those routers. The edge routers in the interposer
also contain the coherence directory. Chiplets are connected
with the interposer using micro-bumps. TSV connects the
micro-bumps with the interposer routers. Interposer routers
use internal link to connect with each other. For instance,
in Figure 7 (c), if GPU-2 wants to send a request packet to
GPU-3, then that packet will reach to the boundary router
of GPU-2 first. In the boundary router, the packet will make
an entry in rc buffer. From the boundary router, the packet
will reach to the interposer router through the TSV. Once
the packet reaches to the interposer router, it will be routed
to the interposer router that is connected to GPU-3. Again,
through the TSV the packet will reach from the interposer
router to the boundary router of GPU-3.

6 METHODOLOGY

We verify and evaluate feasibility of the design in terms
of both functional correctness and design efficiency by syn-
thesizing permission network, along with state-of-the-art 4
stage routers RTL [19], using TSMC 45nm library. Functional
correctness is verified using extensive test-cases. Average
area, power, and delay experienced by permission network
are analyzed by simulating RTL model.

To evaluate viability of RC in the target system, we
build software prototype in gem5 [20]. We experience that
RC can be seamlessly integrated in cycle-accurate network
model of BookSim [21]. Hence for full system setup, we
integrate BookSim with gem5. We configure gem5 for both
heterogeneous (CPU-GPU) and homogeneous (CPU-CPU)
systems. We want to prove that RC is easy to integrate in
full systems and its functionality does not introduce any
new issue and report the observed full system performance.

Finally, we thoroughly study the deadlock issue in hier-
archical network system using extensively modified Book-
Sim (reliably implement hierarchical network topology and
routing) for several synthetic traffic patterns across large
range of injection rates (even beyond saturation points),
different VC and rc_buffer sizes, different number of
boundary routers, different network dimensions, and differ-
ent routing techniques. We want to prove that in modular
SoC, routing flexibility is not an option, it is necessity.

6.1 Experimental Setup

In full system setup, we integrate BookSim with Gem5
to simulate network of Compute Units (CUs) in the GPU
chiplets (GCN-3 [22]), CPUs in CPU chiplet, and also differ-
ent chiplets on active interposer as summarized in Table 2.
We use 4 stage routers having 1-flit buffers per control VC

Parameter Value
CPU 2 GHz frequency, TimingSimple

CPU Cache L1I and L1D - 32KB 4-way
L2 - 64KB 8-way

GPU 1 GHz frequency [22]

GPU Cache
SQC (shared L1I) - 32KB, 8 way
TCP (private L1D) - 16KB , 16 way
TCC (Texture Cache per Channel) - 256 KB, 16 way

Memory Build-in memory model in Gem5 [23]

Network
Booksim integraded with Gem5, 4-stage routers
1-flit buffers per control VC, 4-flit buffers per data VC
64 bit flit size and channel width

Permission N/W 2 cycles/ OPIC hop (round trip including OPIC block latency)

TABLE 2: Parameters of simulated architecture.

and 4-flit buffers per data VC. Flit size and link channel
width is 64 bit. The control packets are 1 flit and data
packets are 5 flits. In homogeneous setup we configure
SoC using multiple (4× 4 mesh) CPU chiplets only and
use MOESI hammer as the coherence protocol. Heteroge-
neous setup uses the multi-chiplet APU configuration [5],
consisting of four GPU chiplets (4× 4 mesh, 16 CUs), one
CPU chiplet (2× 2), and an active interposer (4× 4 mesh)
as shown in Figure 7. We use the in-built memory model in
gem5 equipped with eight memory channels and 8 banks
per channel. We run heterogeneous system-level simulation
on APU applications taken from AMD ROCm Developer
Tools [24] and Rodinia [25] suites. We also evaluate RC in
homogeneous full system setup using PARSEC [26] and
SPEC CPU2017 [27]. For running the Machine Learning
applications, we attach one accelerator [28] on each node
and experimented for training and ring all-reduce opera-
tions using underlying BookSim network simulator. Unless
otherwise mentioned, for synthetic experiments packet size
is 8 flits; we use four 4× 4 chiplet and one 2× 2 chiplet
connected using 4× 4 interposer network, having 2-VC-4-
stage routers with 4-flit buffer depth and 4 packet space in
the rc buffer.

6.2 System Speedup

We evaluate our design using both latency sensitive work-
loads as well as throughput sensitive workloads as shown
in Figure 8. We evaluate our design for the latency sensitive
PARSEC benchmarks and GPU benchmarks and observe
performance difference with canneal in which the average
packet injection rate is moderate to high and almost similar
performance for other benchmarks with MTR as RC per-
forms also similar to MTR for low and moderate network
load. On the other hand for throughput-sensitive programs,
we expose both the techniques to several Machine Learning
applications [28] as well as parallel execution of multiple
instances (32 copies of same application on 32 different
cores) of SPEC CPU2017 benchmarks [27]. As expected,
we observe 14% to 20% system speedup, only attributed
to an efficient deadlock avoidance scheme (RC). Among
the throughput hungry benchmarks, AlexNet is a slight
outlier as the amount of time spent on communication for
this benchmark is significantly low as compared to other
benchmarks. In addition, full system performance can be
boosted by prioritizing delinquent packets [29]. We can
partially achieve that by simply modifying the arbitration
policy in RCVA. Since, that is orthogonal to our current
work, we leave the performance optimization for the full
system setup as our future work.
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7 PERFORMANCE EVALUATION

Keeping the gravity of the inter-chiplet deadlock problem
in mind, we quantitatively compare RC with MTR, ITB
and VC-SEP. We extensively modify BookSim to reflect
the hierarchy of networks. We introduce the concept of
chiplet and interposer in BookSim to reflect their indepen-
dent topology and routing. Different link latencies are also
reflected depending on their length in the interposer. Initial
system we mimic in BookSim, is similar to our prototype
with CPU-GPU in terms of their corresponding network.
Then we expand our design space to evaluate different sen-
sitivity aspects for complete study. To thoroughly study the
deadlock formation we use several synthetic traffic patterns
across huge range of injection rates. We observe that since
the chiplets and interposer routing techniques are deadlock
free, inter-chiplet deadlock forms during high congestion,
near to the saturation points.

7.1 Throughput Analysis

Figure 9 shows that RC outperforms MTR, ITB, and VC-
SEP in terms of network throughput in all the synthetic
traffic patterns. We explain the throughput for uniform
random (UR) traffic as a representative of synthetic traffic
patterns. In UR, the source and destinations are gener-
ated randomly, where most traffics result into inter-chiplet
communication. For example, 3/4 of the generated traffics
consist of outbound packets in the simulated configuration,
which poses more stress on the boundary routers and inter-
poser network. Across all the techniques, VC-SEP has least
throughput, due to under utilization of buffer resources.
While in MTR, turn restrictions on boundary routers create
load imbalance, leading to throughput degradation. In ITB,
ACK/NACKs packets are used for re-transmit request, data
and control packets, which leads to higher network load
and saturates the network earlier. In addition, ejection and
reinjection of packets add latency in the critical path. In con-
trast, RC regulates outbound packet injections facilitated by
rc buffer in boundary routers and frees VC usage constraints
for better resource utilization. Additionally, RC provides
routing flexibility so that traffics can be distributed evenly
to all boundary routers. With these benefits, RC improves
network throughput upto 1.7×.

To analyze the traffic distributions and communication
bottlenecks of different designs, we depict hotspots as

heatmap for UR for MTR, ITB, VC-SEP, and RC at their
near saturation load3 as shown in Figure 10. Hotspot is
defined as the average packet residency time in the router.
Darker color represents higher packet residency time due
to congestion. MTR imposes multiple extra turn-restrictions,
resulting into hotspots due to imbalanced traffic distribution
inside chiplets as shown in Figure 10a, which leads to
low network throughput as shown in Figure 9. Heatmap
for VC-SEP, as depicted in Figure 10c, shows the severe
congestion throughout the SoC network, which is due to the
intensive usage of limited outbound VCs, making network
saturation early. Interestingly, for ITB the contention inside
the chiplets is very low, which can be attributed to packet
drop [10] that yields the buffer resources in the network.
However, extra packet transmissions cause high energy and
power consumption in the chiplets. Since RC has uniform
flow of packets as shown in Figure 10d, it exhibits a bet-
ter throughput than MTR and VC-SEP. RC alleviates the
long waiting of outbound packets from the chiplet routers.
However, the contention in the interposer network partially
offsets the throughput benefit, observed using RC. Note that
we have plotted the heatmap with different injection rate
(throughput injection rate) for each technique to show their
distinct saturation behaviors, and point out the key reason
for saturation. We notice that across all the techniques the
interposer network is heavily used (outbound packets from
multiple chiplet nodes go through one interposer network),
which could be a bottleneck for achieving throughout im-
provements. To alleviate the contention from the interposer,
we plan to extend our work to investigate innovative SoC
topologies as our future work.

7.2 Latency Analysis

As shown in Figure 9, we observe a similar low load latency
among RC, MTR and VC-SEP across various traffic patterns.
Figure 11a presents the detailed comparison of low-load
latency for UR as an example. It shows ITB increases a
few more cycles as compared to other techniques. Extra
ejection and re-injection at low-load incurs two extra hops
that causes high latency overhead. On the other hand, MTR
fails to follow minimum path to destination because of
the extra turn restrictions. In case of RC, because of the

3. Different techniques have different saturation load.
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modular design, route is optimized in each of the indepen-
dently designed modules, which may not result into shortest
path from source node to destination node. We expect to
achieve better low-load latency for RC if we incorporate
more chiplet information by relaxing modularity constraints
while designing interposer routing.

In Figure 11b, we show the average packet latency break-
down for RC for UR to understand the overhead incurred by
injection control. It shows that the portion of granting delay
for rc buffer reservation over packet latency increases with
the increase in network load at the beginning, and decreases
while moving from medium load to high load. This is be-
cause at low load, rc buffer reservation causes constant delay
without contention. Whereas at medium load, contention
on rc buffers increases the granting delay. As injection rate
increases to high load, the exponential injection queuing de-
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are for 4 boundaries in 4×4 GPU chiplet and 4 boundaries in 2×2 CPU
chiplet. The right two bars 8 boundaries in 8×8 GPU chiplet and 4
boundaries in 4×4 CPU chiplet.

lay dominates the packet latency, which reduces the impact
of rc buffer reservation significantly. To alleviate round-trip
delay of the permission network, rc buffers can be operated
in a more proactive way, similar to token circulation rather
than on-demand requesting to reduce the constant delay
at low to medium load. That may improve the permission
request-response delay, if enough tokens flow throughout
the network [30].

7.3 Routing Obliviousness
In this section, we show RC is routing oblivious by imple-
menting Dynamic Credit-based Routing, where each router
adaptively selects either XY, or YX routing depending on the
credit availability in the downstream router. To demonstrate
the benefits of routing oblivious RC, we alleviate the bottle-
neck in interposer as discussed in Section 7.1 by providing
2 extra VCs only for interposer routers. In Figure 12, we
show that when dynamic routing is applied, the throughput
improves in both smaller system (68 node, 84 routers) and
bigger system (272 nodes, 304 routers) by 15.3% and 21%,
respectively. The main advantage of RC is that it gives
complete freedom to the chiplet designers to implement the
best routing for the chiplet, using their domain expertise,
without being worried about system-level deadlock issue.

7.4 Starvation and Fairness
The system ensures that starvation never happens by serv-
ing each of the nodes in a Round Robin (RR) fashion. In
terms of the OPIC delay, the first time request for outbound
packet injection is logically decoupled with the consecutive
retries, by registering the OPIC response in the local node’s
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NI. This system works since RC proactively responds to the
requesters whenever their turn comes in RR and the slot for
entire packet is available.

The fairness issue can be broken down into two distinct
situations, (1) when the rc buffer is full, and (2) when the
rc buffer is available. When the rc buffer is full, none of
the requesters get served, regardless of their location with
respect to the rc buffer. In that case, all the requests wait in
the OPIC block of the boundary router, so the Round Robin
policy can serve them fairly. When the rc buffer is available,
a nearer node stands a higher chance to get served than
a farther node, if they generate requests at the same time.
However, it is not always true. In the OPIC block, when a
requester’s turn comes, the request gets served following
Round Robin policy. This process continues until all the
responses present in that OPIC block get exhausted. The
serving starts again from the point, where it stopped last
time. That is why in some scenarios, even if the request from
the near node reaches first, the responses may get exhausted
before its turn comes. By the time new response arrives,
the request from the far node may get registered. Then
depending on the last serving location, either the near or
the far requester may get served. In summary, we guarantee
that there is no starvation in the system. However, fairness
is always not preserved, as the nodes that are near to the
boundary router may consume higher OPIC bandwidth
than the nodes situated farther, which is an inherent nature
of any multi-hop network.

7.5 Sensitivity Analysis

We scrutinize the system using various size and number of
chiplets to obtain better understanding about system scal-
ability with RC. Difference of throughput is also observed
with different VC sizes and increasing size of rc buffer. We
intend to provide enough insight for estimating the best
combination of these parameters for the system designers.
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Fig. 14: Doubled the number of boundaries 8 boundaries/ 8×8 GPU
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responds to zero load latency shown in bar graphs, and minor Y-axis
corresponds to the throughput as shown in white dots.
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Fig. 15: Throughput sensitivity and interplay between virtual channel
and rc buffer size for 4×4 chiplets (68 nodes setup) with 4 bound-
aries/chiplet.

7.5.1 System Scalability

We extensively study the system scalability as shown in
Figure 13 by increasing number of chiplets in Figure 13b
(132 nodes) as compared to Figure 9 (68 nodes). To compare
the scalability with different size of chiplets, we also keep
the total number of nodes same between Figure 13a (132
nodes) and Figure 13b (132 nodes) and contrast their zero
load latency and throughput. Figure 13d shows a large
system with large number of nodes per chiplet (total 272
nodes) with doubled number of boundaries in each chiplet.
In all the configurations RC outperforms MTR, ITB, and VC-
SEP in terms of throughput. Also in terms of zero load
latency RC exhibits same or better than MTR and much
better than ITB. This is because the detour caused by turn
restrictions in MTR surpluses rc buffer request delay in RC.
For example, in Figure 13c, MTR has 2 extra hops than RC,
which accounts for 17% more in average hops. We observe
that the throughput difference reduces with the increase
in the system size, as more nodes saturate the bisection
bandwidth earlier.

We quantitatively show that with the increase in the
chiplet size, overhead of OPIC does not hamper perfor-
mance. In a 4× 4 mesh with four boundaries, each bound-
ary gets three requesters, and all of them get response from
the boundary OPIC block in 2 cycle. However, in a 8× 8
mesh network, maximum seven requester nodes can be
connected as they are in one, or two hop distance from the
boundary. In that case the furthest node from the boundary
gets the response in total 6 cycles. Other nodes get response
in much lesser time. Since the requests get registered in
the next OPIC block, requester needs to send request only
once. When we scale the number of nodes further we do
not need to reconsider the setup time and hold time, as the
amount of work needed to be done in one cycle will still
be same. Only the number of cycles of getting response will
increase with the increase in distance from the boundary
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Fig. 16: Normalized energy for all the techniques, across all the syn-
thetic traffic patterns.

router. However, it is worth noting that we opt for modular
SoC design as we do not want to make large chips, rather
want to put multiple small chiplets together to scale the
system size. In Figure 13a and in Figure 13b, we show that
system with multiple smaller chiplets in Figure 13a has
better throughput than system with fewer large chiplets.
One reason for the difference in lower throughput with
large number of smaller chiplets is the number of boundary
routers are same for each chiplet both the systems [5],
resulting in more boundaries in total, in case of systems
with smaller chiplets.

Going one step further we doubled the number of
boundary routers for 8×8 chiplets keeping every other pa-
rameter values same. In Figure 14, the result shows that the
average packet latency in case of RC improve significantly)
over MTR by up to 17%. Figure 13(c) and 13(d) show results
for SoCs with 4 boundaries and 8 boundaries per GPU
chiplet, respectively. Average packet latency increased from
68 cycles to 80 cycles in case of MTR, and there is almost no
change for our techniques. Our experimental results show
that MTR travels more than 19.5% extra hops as compared to
RC. This can be attributed to extra turn restrictions imposed
by MTR. In addition, since the complexity of CDG analysis
increased exponentially, we run the MTR algorithm for 7
days to explore the design space and pick the optimal
result, which may not be the optimum turn restrictions for
8 boundary router setup. Interestingly, VC-SEP shows the
zero load latency in this setup. However, the throughput
suffer a lot because of low VC buffer utilization. In contrast,
CDG analysis in 4 boundary setup takes only less than 2
hours to finish in one intel core-i7 processor.

7.5.2 Sensitivity to rc buffer Size and VC Size

In Figure 15, we show impact of rc buffer size on network
throughput, which is the saturation injection rate for SoC
network with four 8×8 GPU chiplets and one 4×4 CPU
chiplet (272 nodes), which shows similar trend for the
smaller baseline setup with 4×4 GPU chiplets. We observe
that increase of both rc buffer size and the number of VCs
have impact on the system throughput. With rc buffer size
of 1, we see hardly any throughput improvement with in-
creasing VC sizes. The throughput improvement from single
packet slots to two packet slots in rc buffer is almost 2×. Also
with 1-VC, increase in the RC size improves throughput
marginally. Result shows that for all the VC sizes, rc buffer
size of 4 is good enough to provide achievable throughput,
which is the case in infinite rc buffer, where the OPIC delay
is zero. In addition, in terms of throughput, the difference
between 4-VC and 8-VC result is also not very significant.

Even 2-VC result also shows a good trade-off between
throughput and energy consumption.

7.6 Area and Energy Analysis
The hardware complexity and area overhead of RC is very
minimal. As per our detailed synthesis report, in each router
of size 49667.53 µm2, OPIC logic consumes only 785.68µm2

area, which is 1.6% of the router area. There are four rc buffer
in each chiplet, and each has 4 packet buffers, consuming
6.0424µm2 in total. Area overhead and hardware complex-
ity incurred is negligible as compared to the total chiplet
area and complexity.

Since we focus on the network deadlock aspect in
this work, we estimate only the network energy to
compare between MTR, ITB, VC-SEP and RC using
DSENT [31] and rc buffer access energy from RTL simulation
(0.10425pJ/flit/access). The energy consumed by the wire
connections in the OPIC tree are not significant. Figure 16
shows energy consumption of different techniques normal-
ized to MTR under 0.013 packets/node/cycle injection rate
for 100000 packets. It shows RC, MTR and ITB consume
similar energy across all the synthetic traffic patterns. In con-
trast, VC-SEP consumes more energy due to low utilization
of VCs, leading to longer simulation time that consumes
more static energy. We expect RC to save more energy by
reducing the static energy in high load since it sustains
higher throughput.

8 RELATED WORKS

Deadlock avoidance mechanisms fan out in two distinct
branches, namely VC and turn model based, and flow
control based techniques. The first type either rely on turn
restrictions, or on dedicated/ordered VC buffer for different
traffic types/directions. On the other hand, flow control
techniques either control the injection of packets, or ensures
bubble in the buffer to avoid deadlocks. The state-of-the-art
solves the new SoC deadlock issue using routing based turn
restrictive technique while RC follows flow control based
deadlock avoidance.

8.1 VC and Turn Model Based
Duato proposed escape-VC [6], a theory for deadlock free-
dom for routing with cyclic channel dependency. Duato’s
theory can be applied for both deadlock avoidance [32],
[33] and deadlock prevention [18], [34] techniques. Idea of
escape channel cannot be applied directly in modular SoC
as the packets in the escape-VC must be propagated using
a deterministic deadlock free algorithm, which cannot be
guaranteed in a modular SoC. Recently Ebrahimi et al. [35]
propose EbDa that provides exclusive sets of VCs to isolate
traffics (say, intra-chiplet traffic, and inter-chiplet, or out-
bound traffic) to avoid deadlocks. However, VC separation
leads to lower utilization and is shown less attractive in
MTR [5], and we also find the same way.

Dally et al. [4] propose to use two or more VCs in order
to avoid the cyclic channel dependencies. It ensures dead-
lock freedom by using total ordering of VCs. Even though
this condition is sufficient to avoid the deadlock, it is not
necessary [7]. Extra VCs result in increase in the router area
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and energy consumption. Based on Dally’s theory, a few
other techniques have been proposed that use additional
VCs [36], [37] to avoid deadlock. Another way to achieve
strict order of reservation for the shared VCs is by imposing
turn restrictions [38], [39] on the packet traversal.

8.2 Flow Control Based
For providing deadlock freedom, flow control techniques
either regulate the injection [40] of the packets or allow
a packet to go forward depending on the buffer occu-
pancy [41] in the ring. The second concept is coined as
bubble flow control by Puente et al. [42] and applied in torus
network for the flow control in escape channel. This concept
is being used in in-transit buffer for avoiding deadlock in
k-ary n-cube torus network [43], and extended later for
irregular off-chip network [10], worm-whole switching [44],
torus cache-coherent NoCs [45].

Recently Ramrakhani et al. [7] propose SPIN, a synchro-
nized flow control technique for deadlock prevention in
flat network. It is very challenging to apply synchronized
flow control in modular SoC, where the chiplets are de-
signed independently, and connected through the interposer
routers. Moreover, synchronization of packet movement
among chiplets make the design very complicated.

9 CONCLUSIONS

Chiplet-based system integration on an active interposer is
a scalable and economic solution for improving system per-
formance. As deadlock freedom is one of the main concerns,
we propose RC, a simple routing oblivious technique for
modular SoCs. It completely protects the idea of modular
design by providing total independence to the chiplet ven-
dors, in terms of routing logic, topology, dimension, etc.
The low load latency improvements of RC over MTR, ITB
and VC-SEP are up to 15.49%, 19.17%, and 13.76% across
different configurations for all the synthetic workloads, re-
spectively. The throughput improvements achieved by RC
over MTR, ITB, and VC-SEP are up to 56.34%, 12.12%,
and 2.5×, respectively. In full system simulations for real
workloads, we improve performance upto 20% as compared
to state-of-the-art MTR. As part of future work, we want to
investigate application-aware OPIC system, where critical
packets can be prioritized in the rc buffer for better system
performance.
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