
A MULTITREE Example and Comparison with
Double Binary Tree

Jiayi Huang, Pritam Majumder, Sungkeun Kim, Abdullah Muzahid, Ki Hwan Yum, Eun Jung Kim

Abstract—In this document, we illustrate the MULTITREE all-
reduce tree schedule construction by showing a more complicated
example using (3×3) torus network. Then we contrast the
MULTITREE and double binary tree algorithm by visualizing
their all-reduce communication steps.

I. MULTITREE ALL-REDUCE FOR 3×3 TORUS NETWORK

Fig. 1 shows the MULTITREE [1] all-reduce tree sched-
ule construction for a 3×3 torus network, which shows the
link allocation sequences for each time step to construct the
spanning trees. In the example, node n in tree T is denoted as
T-n and label i of an edge is the allocation sequence of that

link to connect two nodes in a tree. The algorithm constructs
9 spanning trees for a 9-node network by starting with the
9 tree roots as initial states, as described in Fig. 1b. Then,
a topology graph is used to allocate the links to connect the
remaining nodes of all the trees, which take turns to get a link
from the topology graph. When there is no available link to
connect remaining nodes for any of the trees, a new topology
graph is used to schedule for the next communication time
step. In total, the trees can finish each phase (reduce-scatter
or all-gather) in 3 time steps.

A. Time step 1

Fig. 1a–1e show the link allocation for time step 1, where
Fig. 1a shows the topology graph and Fig. 1c–1e depict the
partial tree built for this time step. The edge label in the
trees denotes the link allocation sequence. For example, edge
labeled with 0 that connects 0-0 to 0-6 in Fig. 1c (node
0 to node 6 in tree 0) denotes that it is the first link that
allocated from the topology graph (corresponding to the edge
labeled with 0 in Fig. 1a). Then this edge is removed from
the topology graph in Fig. 1a. Similarly, the next allocated
link is the edge labeled with 1 (in both Fig. 1a and Fig. 1c),
which connects 1-1 to 1-7 (node 1 to node 7 in tree 1).
When the topology graph runs out of links as shown on the
right in Fig. 1a, all the links allocated in this time step can
be used for scheduling communication concurrently. Then a
new topology graph is used to schedule communication for
the next time step.

B. Time step 2

After the topology graph in Fig. 1a runs out of links for
time step 1, a new topology graph in Fig. 1f is used for link
allocation for time step 2. Fig. 1g–1i show the partial trees
after link allocation at time step 2, with the newly added edges
highlighted. Since the remaining edges in the right topology

graph in Fig. 1a cannot connect any remaining nodes of any
tree, a new topology graph is used for the next time step.

C. Time step 3

Similarly, a new topology graph on the left in Fig. 1j is
used to connect the remaining nodes to form the spanning
trees. Fig. 1k–1m show the final complete trees with the newly
added edges highlighted.

After tree construction, the trees are processed to generate
reduce and broadcast schedules for the reduce-scatter and all-
gather phases, as shown in Fig. 2. All the nodes participate in
zero or one of the trees at a particular time step, interleaving
the usage of the link bandwidth globally to achieve low to
zero contention even with large data size. All the trees spend
the first three time steps on reduce for reduce-scatter, and the
second three time steps on broadcast for all-gather.

II. DOUBLE BINARY TREE FOR A 9-NODE NETWORK

We implemented double binary tree algorithm to generate
two trees with fast coloring for 9-node all-reduce [2], as shown
in the upper-right corner in Fig. 3. The incoming edge of
a node for broadcast (outgoing edge for reduce) is colored
as black or red. The node also has the same color as the
incoming edge for clarity. The remaining plots in Fig. 3 show
the pipelined double binary tree for reduce phase using the two
binary trees. The all-reduce data are partintioned into 9 chunks
in a 9-node network for pipelining, where tree 0 and tree 1
handle data chunks {0, 2, 4, 6, 8} and {1, 3, 5, 7}, respectively.
D-n denotes the node number in the tree for data chunk

D and edge color denotes the time for communication. The
odd time steps are used for communication colored with red
while the even time steps are used for communication colored
with black, and the white node denotes only receiving but not
sending data.

The rationale behind double binary tree is that the leaf
nodes in a reduction tree only send data, so they can also
be the internal nodes in another reduction tree to receive data.
By proper pipelining with coloring, the communications can
be scheduled to be faster compared to a single tree. In this
example, data chunks 0 and 1 can be reduced using trees 0
and 1 as shown in the two left-most trees in Fig. 3. At time step
3, the leaf nodes of trees 0 and 1 have finished communication
for data chunks 0 and 1, they can be reused to send new data
chunks 1 and 2, in a pipeline fashion. Other remaining data
chunks follow the same manner. In total, the reduce phase
needs 15 time steps, where each communicated data between
two nodes in a step is the same as MULTITREE.



MULTITREE link allocation for time step 1

0

3

9

6

0

127 2

18

3

12

430 5

2115

6

733 8
24

19

10
1

28

22
4

13

31

25

16

7

34

29

20

11
2

32

23

5

14

35

26

17

8

0

3

6

1 2

4 5

7 8

(a) Topology graph before (left) and after (right) link alloca-
tion for step 1

0-0 1-1 2-2 3-3 4-4 5-5 6-6 7-7 8-8

(b) Initial states of all the trees

0-0

0-6

0

0-3

9

0-2

18

0-1

27

1-1

1-7

1

1-4

10

1-0

19

1-2

28

2-2

2-8

2

2-5

11

2-1

20

2-0

29

(c) Trees 0–2 in the end of step 1

3-3

3-0

3

3-6

12

3-5

21

3-4

30

4-4

4-1

4

4-7

13

4-3

22

4-5

31

5-5

5-2

5

5-8

14

5-4

23

5-3

32

(d) Trees 3–5 in the end of step 1

6-6

6-3

6

6-0

15

6-8

24

6-7

33

7-7

7-4

7

7-1

16

7-6

25

7-8

34

8-8

8-5

8

8-2

17

8-7

26

8-6

35

(e) Trees 6–8 in the end of step 1

MULTITREE link allocation for time step 2

0

3

55

6

148 2

39

58

451 5

4261

745 8
36

40

56

49

43

59

52

37

62

48

50

41

54

53

44

57

47

38

60

0

3

6

1 2

4 5

7 8

(f) Topology graph before (left) and after (right) link alloca-
tion for step 2

0-0

0-6

0

0-3

9

0-2

18

0-1

27

0-8

36

0-7

45

0-5

54

1-1

1-7

1

1-4

10

1-0

19

1-2

28

1-6

37

1-8

46

1-3

55

2-2

2-8

2

2-5

11

2-1

20

2-0

29

2-7

38

2-6

47

2-4

56

(g) Trees 0–2 in the end of step 2

3-3

3-0

3

3-6

12

3-5

21

3-4

30

3-2

39

3-1

48

3-8

57

4-4

4-1

4

4-7

13

4-3

22

4-5

31

4-0

40

4-2

49

4-6

58

5-5

5-2

5

5-8

14

5-4

23

5-3

32

5-1

41

5-0

50

5-7

59

(h) Trees 3–5 in the end of step 2

6-6

6-3

6

6-0

15

6-8

24

6-7

33

6-5

42

6-4

51

6-2

60

7-7

7-4

7

7-1

16

7-6

25

7-8

34

7-3

43

7-5

52

7-0

61

8-8

8-5

8

8-2

17

8-7

26

8-6

35

8-4

44

8-3

53

8-1

62

(i) Trees 6–8 in the end of step 2

MULTITREE link allocation for time step 3

0

3

6

169 2

463 5

766 8

70

64

67

71

65

68

0

3

6

1 2

4 5

7 8

(j) Topology before (left) and after (right) link allocation for
step 3

0-0

0-6

0

0-3

9

0-2

18

0-1

27

0-8

36

0-7

45

0-4

63 0-5

54

1-1

1-7

1

1-4

10

1-0

19

1-2

28

1-6

37

1-8

46

1-5

64 1-3

55

2-2

2-8

2

2-5

11

2-1

20

2-0

29

2-7

38

2-6

47

2-3

65 2-4

56

(k) Trees 6–8 in the end of step 3
3-3

3-0

3

3-6

12

3-5

21

3-4

30

3-2

39

3-1

48

3-7

66 3-8

57

4-4

4-1

4

4-7

13

4-3

22

4-5

31

4-0

40

4-2

49

4-8

67 4-6

58

5-5

5-2

5

5-8

14

5-4

23

5-3

32

5-1

41

5-0

50

5-6

68 5-7

59

(l) Trees 6–8 in the end of step 3

6-6

6-3

6

6-0

15

6-8

24

6-7

33

6-5

42

6-4

51

6-1

69 6-2

60

7-7

7-4

7

7-1

16

7-6

25

7-8

34

7-3

43

7-5

52

7-2

70 7-0

61

8-8

8-5

8

8-2

17

8-7

26

8-6

35

8-4

44

8-3

53

8-0

71 8-1

62

(m) Trees 6–8 in the end of step 3
Fig. 1: MULTITREE construction for all-reduce of a (3×3) torus network. Node n in tree T is denoted as T-n and label i of an edge is
the allocation sequence of that link to connect two nodes in a tree. The subplots show the link allocation for time step 1 (a)–(e), time step
2 (f)–(i), and time step 3 (j)–(m).

2



Time step 1

Time step 2

Time step 3

0-8 0-7

0-6 0-3

0-0

0-2 0-1 1-7 1-4

1-1

1-0

1-6 1-8

1-2 2-8 2-5

2-2

2-7 2-60-5

0-4

1-3

1-5

2-1 2-0

2-4

2-3

Reduce-scatter
—————————————————-

All-gather

Time step 4

Time step 5

Time step 6 0-8

0-0

0-6

0-3

0-2 0-1

0-7

0-4

0-5

1-1

1-7

1-4

1-0 1-2

1-6 1-8

1-5

1-3

2-2

2-8

2-5

2-1 2-0

2-7 2-6

2-3

2-4

(a) Trees 0–2 all-reduce

Time step 1

Time step 2

Time step 3

3-2 3-1

3-0 3-6

3-3

3-5 3-4 4-1 4-7

4-4

4-3

4-0 4-2

4-5 5-2 5-8

5-5

5-1 5-03-8

3-7

4-6

4-8

5-4 5-3

5-7

5-6

Reduce-scatter
—————————————————-

All-gather

Time step 4

Time step 5

Time step 6 3-2

3-3

3-0

3-6

3-5 3-4

3-1

3-7

3-8

4-4

4-1

4-7

4-3 4-5

4-0 4-2

4-8

4-6

5-5

5-2

5-8

5-4 5-3

5-1 5-0

5-6

5-7

(b) Trees 3–5 all-reduce

Time step 1

Time step 2

Time step 3

3-2 3-1

3-0 3-6

3-3

3-5 3-4 4-1 4-7

4-4

4-3

4-0 4-2

4-5 5-2 5-8

5-5

5-1 5-03-8

3-7

4-6

4-8

5-4 5-3

5-7

5-6

Reduce-scatter
—————————————————-

All-gather

Time step 4

Time step 5

Time step 6 3-2

3-3

3-0

3-6

3-5 3-4

3-1

3-7

3-8

4-4

4-1

4-7

4-3 4-5

4-0 4-2

4-8

4-6

5-5

5-2

5-8

5-4 5-3

5-1 5-0

5-6

5-7

(c) Trees 3–5 all-reduce

Fig. 2: MULTITREE All-Reduce (reduce-scatter and all-gather) time
steps for trees 0–2 (a), trees 3–5 (b) and trees 6–8 (c). Note that all
the trees spend the first three time steps on reduce for reduce-scatter,
and the second three time steps on broadcast for all-gather.

III. MULTITREE VERSUS DOUBLE BINARY TREE

As examples in Fig. 2 and Fig. 3 show, in a 3×3 torus
network, MULTITREE can finish all-reduce (reduce-scatter and
all-gather) in 6 time steps while double binary tree finishes
reduce phase in 15 time steps. Although the broadcast phase
of double binary tree can also be pipelined with the reduce
phase, the time spent on reduce phase in double binary tree is
sufficient to run MULTITREE all-reduce twice. Even though
without pipelining for small message size, the reduce phase in
double binary tree needs 8 time steps, which is larger than the
number of time steps in MULTITREE for the whole all-reduce
operation.

The main benefit of MULTITREE is its topology awareness
in design, which leverages the topology to better coordinate
the communications and construct multiple trees instead of
just two. Moreover, the topology-aware design reduces the
communication inside the network due to the fact that the
nodes connected by an edge in MULTITREE are neighbors
in the network, making it friendly to any network topology.
On the contrary, it is non-trivial or even impossible to map
the double binary tree to have the same feature depending on
the network topology. This can make communication between
two nodes in the two trees actually cross multiple nodes in the
network, leading to high latency even with small message [3].
In addition, double binary tree is designed to utilize the net-
work interface bandwidth at the end nodes while MULTITREE
further co-design with the network to better utilize both end-
node and network bandwidth.

In summary, double binary tree is designed for small
to medium data size to achieve latency improvement while
MULTITREE targets for both latency and bandwidth for com-
munication with small to large data size. And double binary
tree works well on network similar to all-to-all topology while
MULTITREE applies well to various network topologies.

REFERENCES

[1] J. Huang, P. Majumder, S. Kim, A. Muzahid, K. H. Yum, and E. J.
Kim, “Communication Algorithm-Architecture Co-Design for Distributed
Deep Learning,” in Proceedings of the 48th International Symposium on
Computer Architecture (ISCA-48), June 2021, pp. 181–194.

[2] P. Sanders, J. Speck, and J. L. Träff, “Two-tree Algorithms for Full
Bandwidth Broadcast, Reduction and Scan,” Parallel Computing, vol. 35,
no. 12, pp. 581–594, 2009.

[3] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, and B. Li, “Communication-
Efficient Distributed Deep Learning: Survey, Evaluation, and Challenges,”
arXiv preprint arXiv:2005.13247, 2020.

3



Time step 1

Time step 2

Time step 3

Time step 4

Time step 5

Time step 6

Time step 7

Time step 8

Time step 9

Time step 10

Time step 11

Time step 12

Time step 13

Time step 14

Time step 15

0-0

0-8

0-1

0-2

0-4

0-5

0-6

0-3

0-7

1-7

1-8

1-2

1-1

1-3

1-0

1-5

1-6

1-4

2-0

2-8

2-1

2-2

2-4

2-5

2-6

2-3

2-7

3-7

3-8

3-2

3-1

3-3

3-0

3-5

3-6

3-4

4-0

4-8

4-1

4-2

4-4

4-5

4-6

4-3

4-7

5-7

5-8

5-2

5-1

5-3

5-0

5-5

5-6

5-4

6-0

6-8

6-1

6-2

6-4

6-5

6-6

6-3

6-7

7-7

7-8

7-2

7-1

7-3

7-0

7-5

7-6

7-4

8-0

8-8

8-1

8-2

8-4

8-5

8-6

8-3

8-7

T1-8

T1-7

Tree 1

T1-3

T0-8

T0-0

Double Binary Tree

T0-4

Tree 0

T0-2 T0-6

T0-1 T0-3 T0-5 T0-7

T1-1

T1-2 T1-0

T1-5

T1-6 T1-4

Fig. 3: Pipelined double binary tree for the reduce phase using the colored trees 0 and 1 in the upper-right corner, where a node’s incoming
edge for broadcast (outgoing edge for reduce) is colored to black or red. The node is also colored to be same of the incoming edge for
clarity. The all-reduce data are partitioned into 9 chunks (9 nodes) for pipelining, where tree 0 and tree 1 handle data chunks {0, 2, 4,
6, 8} and {1, 3, 5, 7}, respectively. D-n denotes the node number in the tree for data chunk D and edge color denotes the time for
communication. The odd time steps are used for communication colored with red while the even time steps are used for communication
colored with black, and the white node denotes only receiving but not sending data. Each communicated data between two nodes in a step
is the same as MULTITREE.

4


	MultiTree All-Reduce for 33 Torus Network
	Time step 1
	Time step 2
	Time step 3

	Double Binary Tree for A 9-node Network
	MultiTree versus Double Binary Tree
	References

