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ABSTRACT
The trend of unsustainable power consumption and large memory
bandwidth demands in massively parallel multicore systems, with
the advent of the big data era, has brought upon the onset of alter-
nate computation paradigms utilizing heterogeneity, specialization,
processor-in-memory and approximation. Approximate Computing
is being touted as a viable solution for high performance computa-
tion by relaxing the accuracy constraints of applications. This trend
has been accentuated by emerging data intensive applications in
domains like image/video processing, machine learning and big data
analytics that allow inaccurate outputs within an acceptable variance.
Leveraging relaxed accuracy for high throughput in Networks-on-
Chip (NoCs), which have rapidly become the accepted method for
connecting a large number of on-chip components, has not yet been
explored. We propose APPROX-NoC, a hardware data approxima-
tion framework with an online data error control mechanism for high
performance NoCs. APPROX-NoC facilitates approximate matching
of data patterns, within a controllable value range, to compress them
thereby reducing the volume of data movement across the chip.

Our evaluation shows that APPROX-NoC achieves on average
up to 9% latency reduction and 60% throughput improvement com-
pared with state-of-the-art NoC data compression mechanisms, while
maintaining low application error. Additionally, with a data intensive
graph processing application we achieve a 36.7% latency reduction
compared to state-of-the-art compression mechanisms.

CCS CONCEPTS
• Computer systems organization → Interconnection architec-
tures; Multicore architectures; • Networks → Network perfor-
mance analysis;
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1 INTRODUCTION
Approximate Computing [14, 23, 30, 34] has emerged as an attrac-
tive alternate compute paradigm by trading off computation accuracy
for benefits in both performance and energy efficiency. Approximate
techniques rely on the ability of applications and systems to tolerate
imprecision/loss of quality in the computation results. Many emerg-
ing applications in machine learning, image/video processing and
pattern recognition have already employed approximation to achieve
better performance [2, 11, 15, 16, 18].

Previous research has proposed several approximation techniques
for emerging data-intensive applications. Software approximation
mechanisms [27, 28, 32] have attempted to reduce the computation
overhead by approximately executing particular sections of applica-
tion code. Hardware mechanisms, that either advocate approximate
computation or storage, propose to tradeoff accuracy for high per-
formance and energy efficiency. These hardware techniques can
be broadly categorized into compute-based or memory-based ap-
proximation. Compute-based approximation techniques use inexact
compute units [6, 7, 14] or neural network models [13, 15, 25, 35]
for code acceleration. Memory-based techniques [21, 23, 31] exploit
data similarity across memory hierarchies to achieve larger capacity
and energy efficiency. A significant portion of research on hardware
approximation techniques has focused on either the computation
units for accelerated inaccurate execution, or the storage hierarchy
(cache/DRAM-based) for low overhead (area/power) memory.

However, there has been no prior research on approximate com-
munication techniques for the interconnection fabric of multicore
systems. Networks-on-Chip (NoCs) have emerged as the most com-
petent method to connect an ever increasing number of varied on-
chip components including conventional cores, accelerators, caches
and memory controllers. Communication-centric applications such
as image/video processing and emerging memory intensive appli-
cations in the big data era place a significant amount of stress on
the NoC for high memory throughput, triggering many designs
that try to solve the memory bandwidth issue [3, 4, 19, 24]. Hence
designing a high-performance NoC, which can efficiently provide
high throughput, has become critical to overall system performance.
Therefore, the need to explore hardware approximation techniques
that can leverage the modern approximate computing paradigm for
high throughput NoCs is imminent.

Approximation with error control is important for guaranteed
output quality [18]. Previous research has either adopted training
during compilation [15, 35] or error control at runtime [18, 23] to
reduce the output noise. In NoCs, since the approximation lies on the
critical path of data response, it is critical to facilitate low overhead
control in the inaccuracy incurred.
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In this work we propose APPROX-NoC, a data approximation
framework for NoCs to alleviate the impact of heavy data com-
munication stress by leveraging the error tolerance of applications.
APPROX-NoC proposes to reduce the transmission of approximately
similar data in the NoC by delivering approximated versions of pre-
cise data to improve the data locality for higher compression rate.
The proposed framework operates by first utilizing an approxima-
tion engine, with a lightweight error control logic, to approximate
the given data block to the nearest compressible reference data pat-
tern. Then the encoder module of an underlying NoC compression
technique [12, 17] is used to compress the data block. We propose
a data-type aware value approximatiion technique (VAXX), with
a light weight error margin compute logic, which can be used in
the manner of plug and play module for any underlying NoC data
compression mechanisms. VAXX approximates the value of a given
data block to the closest compressible data pattern based on the
data type,with fast quantitative error margin calculation. The error
threshold to control the extent of data approximation allowed can
be determined by the compiler or annotated by the programmer and
can be dynamically adjusted at run time.

Tightly-coupling the approximation technique with the underly-
ing compression is more economical in terms of area and power
efficiency. To this order, we present two low overhead microarchi-
tecture implementations of value approximation for both dynamic
dictionary-based compression (DI-COMP), namely DI-VAXX, and
static frequent pattern compression (FP-COMP), namely FP-VAXX.

The major contributions of the work are as follows:

• We exploit approximate data similarity in communication,
which translates to high data compressibility to reduce traf-
fic load in NoCs thereby improving performance.

• We design an approximation engine with a data-type aware
value approximate technique (VAXX) and lightweight error
control logic to cater to a wide range of applications.

• Low overhead microarchitectural implementations to ma-
terialize the value approximation technique for static and
dynamic compression mechanisms are presented.

• Our evaluation results show that APPROX-NoC provides
promising opportunities in big data application domain.
With an data intensive graph processing benchmark, we
achieve latency reduction of 36.7% compared to state-of-
the-art compression mechanisms.

The rest of the paper is organized as follows. In Section 2 we
motivate our work by presenting the motivation and challenges of
approximation in NoCs. In Section 3 we present the architectural
overview of APPROX-NoC and the VAXX technique. Section 4
explains the microarchitectural implementation and functional prin-
ciples of the VAXX techniques for dictionary-based and frequent
pattern based compression mechanisms. Section 5 presents our ex-
perimental setup and evaluations. Section 6 details the related work
and we conclude our work in Section 7.

2 MOTIVATION AND CHALLENGES
In this section we first detail our motivation leading to the use of
data approximation in NoCs and then present the challenges of
implementing the proposed techniques.

2.1 Motivation
Data movement is becoming the critical component in multicore
systems. The rapid explosion of computational units in comparison
with memory bandwidth, and increasing data-movement-to-compute
ratio of emerging data-intensive big data workloads has resulted in
heavy NoC communication loads. In such scenarios, state-of-the-art
NoC designs can rapidly become the communication bottleneck and
struggle to deliver the traffic in an energy-efficient manner. Multiple
potential solutions like near data processing [4], moving processing
to memory plane to reduce the amount of data movement, are be-
ing proposed. But even these mechanisms still require significant
data movement between processsing and memory planes or within
the memory plane, between the different memory slices. Therefore
mechanisms that can reduce the communication traffic load in state-
of-the-art NoCs become critical to cater to emerging data-intensive
applications.

Frequently repeated patterns appear in applications. Previ-
ous research [12, 17, 37] has proposed using data compression tech-
niques in NoCs to facilitate low latencies even at saturation level of
injection loads. It can be trivially deduced that if enough data repeti-
tion is present in applications, then data compression mechanisms
will be an appropriate antidote to the communication bottleneck
issue explained above.

Data accuracy is not required. Additionally, applications that
allow for approximate outputs do not require exact data to be trans-
mitted across the network for accurate computations. Previous re-
search [14, 30] has proposed an EnerJ framework which can be
used by programmers to annotate sections of the data in applications
that can be stored approximately. Doppelganger [23] proposes an
approximate cache architecture that leverages the similarity between
different cache blocks to eliminate redundant data storage. These
mechanisms prove that in addition to repetition of specific data pat-
terns, sufficient amount of value similarities, with small variance,
between data patterns exists in many applications. But the techniques
mentioned above still incur the cost of bringing the data accurately
to the cache before determining whether storage is required or not.
Therefore, the data movement in the NoC can be further reduced
by eliminating transmission of approximately similar cache blocks
across the network by using network data approximation techniques.

Defining approximate data similarity is necessary. Data simi-
larity is defined according to a predefined error threshold. For exam-
ple, when 0% error is allowed then the two patterns must be an exact
match to be considered similar, however with an error of e% allowed
two patterns are considered similar if the difference between them
is less than e%. The value difference is defined as the variance in
the value between the two patterns. For example, the 8 bit patterns
10101011 and 10100000 have a value difference of 11.

2.2 Challenges
Value approximation and compression are not cheap. Value ap-
proximation and data compression mechanisms are on the critical
path of the data packet injection. The underlying compression tech-
niques have considerable area and latency overheads. Dynamic com-
pression requires storage for pattern tracking and data lookup while
static compression incurs significant encoding and decoding logic.
The approximation operation adds further latency overhead on to the
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compression mechanism’s latency. Value range and error computa-
tion using complex multiplication is expensive and hence can eat up
the benefits from flit reduction achieved through approximation and
compression. Thus, low latency approximation and error compute
logic design are required. Although the approximation engine can be
treated as a plugin module, it is economical to have tightly-coupled
approximation and compression implementation alternatives for
lower overheads in terms of area, latency and energy.

Quality control is important. Approximable applications still
require some Quality of Service (QoS) guarantees in terms of the out-
puts produced or data being supplied. As mentioned in Rumba [18],
it is also critical to differentiate overall quality control versus control-
ling errors in individual elements. Hence the proposed mechanism
should be capable of controlling the data error rate individually in
each cache block similar to Doppelganger [23] and also across the
whole program execution. We assume that the programmer can de-
termine the QoS needed and the compiler can translate this into
error threshold allowed in different simultaneously available hard-
ware techniques, i.e. if multiple hardware approximation techniques
are concurrently available in the system the compiler/firmware can
determine the error threshold each technique can incur. It should
be noted that, this way, our mechanism can work in synergy with
CPU/cache/storage approximation mechanisms to determine the
error budget allowed in each scheme, respectively.

3 APPROX-NOC FRAMEWORK
ARCHITECTURAL OVERVIEW

In this section, we first describe the baseline multicore system archi-
tecture and then detail the APPROX-NoC framework. The baseline
system includes a collection of heterogeneous tiles connected via an
NoC. Each tile may consist of core/accelerator units, FPGA/ASICs,
private caches, a slice of the last level cache and/or an on-chip
memory controller (MC) unit. The tiles are connected to routers
of the NoC, in either a one-to-one or many-to-one (concentrated)
fashion depending on the NoC design. Each router connects to the
different components of a tile via Network Interface (NI) ports. The
packetization/de-packetization of injected communication and the
flit fragmentation/assembly for flow control are performed in the
NI. The NoC traffic consists of control packets for message pass-
ing/shared memory and data request/reply packets. The size of the
packet varies depending on whether it is an address/control packet
or a data packet.

3.1 APPROX-NoC Framework
Figure 1 shows the high level architectural depiction of the APPROX-
NoC framework. Traditionally, when data to be transmitted enters
the NI from the tile, it is packetized and fragmented into flits in
preparation for transmission. The packet is then injected into the
router via the NI port in a flit-by-flit fashion. When the packet reaches
its destination, the flits are assembled to restore the packet. The
APPROX-NoC framework consists of a value approximate module,
namely VAXX, and an encoder/decoder pair for data compression
in the NI. The encoder, of the underlying compression technique,
tries to compress each word in the cache block to be transmitted and
sends a small encoded index with meta data instead of the whole
pattern, thereby reducing the size of the packet being injected into the
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Figure 1: APPROX-NoC Architectural Overview.

network. Before compression, the VAXX module facilitates value
approximation for the underlying compression scheme as detailed
below, thereby improving the compression rate.

Cache Block

Approximable?

Y

Approximate
Logic

Int or float?

Mantissa 
extraction

N

float

int

Compressor

A
p

p
ro

xi
m

at
e 

V
al

u
e 

C
o

m
p

u
te

 L
o

gi
c 

(A
V

C
L)

Figure 2: APPROX-NoC Operation Flowchart.

Figure 2 shows the flowchart describing the functioning of APPROX-
NoC. For a cache block waiting to be injected into the network,
metadata containing the approximable flag and data type are initially
checked. If the cache block is not approximable, it bypasses the
approximation (VAXX) engine and starts compression. In case of an
approximable cache block, the data type is checked and the block is
sent to the approximation logic if it is an integer. For floating-point
data variables, we approximate only the mantissa fields and the ap-
proximation logic for integer values is reused to minimize the area
and power overheads. The error range compute unit is also included
in the approximation logic and the VAXX technique guarantees that
the approximated data differs from the precise word within the pre-
set error threshold. The approximated data blocks are then sent to
encoder for compression operation.

Figure 3 shows an APPROX-NoC working example by depict-
ing the encoding of a cache block (24B with 6 x 4B words) at the
source and its decoding at the destination. The encoder in this ex-
ample has two recorded reference patterns B and E, which can be
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Figure 3: Compression and Decompression of a 6-Word Cache
Block.

encoded, and the patterns C and F are determined to be approxi-
mately similar to E and B, respectively, using the VAXX technique.
When the cache block is ready to be injected into the network, the
encoder compresses the approximated block to an intermediate net-
work representation (NR) by replacing the candidate data patterns
with encoded code. The cache block, now in the NR form, is then
packetized, fragmented into flits and injected into the attached router.
Note that the patterns C and F are compressed approximately only if
the compiler annotates the data to be safely approximable. When the
packet reaches its destination, the decoder at the destination detects
the reference pattern encoded code to decode the NR into the cache
block which is an approximated version of the original cache block,
with words C and F replaced by similar words E and B, respectively.

3.2 Approximate Value Compute Logic Design
We propose the VAXX value approximate technique to compute an
approximate value for a given data block within a predetermined
error threshold. In this work we focus on integer and floating-point
value approximation. We approximate the cache block, to be trans-
mitted, only when all the words in the block are approximable and
this information is assumed to be carried with the access request
for this block. The core of VAXX is implemented in the Approxi-
mate Value Compute Logic (AVCL), which consists of floating-point
mantissa extraction, error range compute and approximate logic.
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Figure 4: Approximate Value Compute Logic.

For a given value, the VAXX technique needs to compute the
variance by which the approximate value can deviate from the pro-
vided precise value. For example, for a data pattern 1001(value = 9)
and an error threshold of 20% the range of values 8(1000), 9(1001),
10(1010), 11(1011) can be potential matches, i.e., the data value
patterns 8, 9, 10 or 11 can be approximately matched to the pattern
9(1001). We observe that in this example the 2 least significant bits
are don’t cares for the approximate matching, i.e., we can match
the pattern “10xx” (approximate pattern) to any reference pattern to
make the similarity decision. This computation can be performed
using multiplication/division operations but such a design is too
expensive and also unscalable.

To calculate the error range, we first compute the number of
bits to represent the largest error a value can tolerate given the
predetermined threshold. We simplify the logic by precomputing
the number of shift bits, 100/e where e is the error threshold (%),
which are used to shift right the value to compute the error range
(error_range = given_value × (e/100) => given_value/(100/e)). For
example, for an error threshold of 25%, the number of shift bits is 4.
Hence, when the data pattern value is 128, the error_range can be
easily determined to be 32.

Floating-point value approximation is more complicated than
integer due to the representation. A floating-point value is repre-
sented as: (−1)sign × (1+ .mantissa)×2(exponent−bias) . We propose
to approximate only the mantissa field of floating-point values. The
mantissa part is extracted and transformed to scale to the size of an
integer value, by padding the most significant bits with zeros. To
transform and scale the value of a floating-point value, we extract
the 23-bit mantissa part and concatenate it with a higher bit 1 to
form the significant, where the exponent part is scaled out. This
way both the integer and transformed floating-point variables can
use the same approximate logic to maintain low overhead. Figure 4
shows the AVCL design in detail, where the datapaths taken by the
integer and floating-point variables are represented separately for
ease of understanding. The float exponent detection logic determines
whether to bypass the approximation unit, for floating-point vari-
ables, whenever the exponent is 0 or all 1’s, which represent special
objects such as zero, denormalized numbers, infinity and NaN. For
variables that are annotated to be non-approximable, the AVCL logic
is bypassed.

The proposed APPROX-NoC framework can use the VAXX tech-
nique on top of any data compression mechanisms. But, trivially
adding VAXX modules on top of NoC data compression can be
expensive and unscalable due to the computation as well as latency
overhead. Therefore it is critical to design microarchitectures that
optimize the functionality of VAXX + compression as a whole in
terms of area/latency/power. To this extent, in the next section, we
showcase two microarchitectural implementation casestudies of the
APPROX-NoC framework with two state-of-the-art NoC data com-
pression mechanisms.
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Index Pattern encoded Data	Size
000 Zero	run 3 bits
001 4-bit	sign-extended 4	bits
010 One	byte	sign-extended 8	bits
011 Halfword	sign-extended 16	bits
100 Halfword padded	with	a	zero	halfword 16 bits
101 Two halfwords,	each	a	byte	sign	extended 16	bits
111 UncompressedWord 32	bits

Figure 5: Frequent Pattern Compression [5].

EI Frequent	Pattern	(4B)
Byte	3 Byte	2 Byte	1 Byte	0

000 0 0 0 0

001
0 0 0 0 0 0 0 0xxx
1 1 1 1 1 1 1 1xxx

010
0 0 0 X0

1 1 1 X1

011
0 0 X0 X
1 1 X1 X

100 X X 0 0
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0 X0 0 X0

1 X1 1 X1

Given	pattern

X0:	0xxxxxxx				X1:	1xxxxxxx			CA:	Compress	Arbitration			EI:	Encoded	Index
X:	xxxxxxxx 0:	all	0’s			1:	all	1’s

Approximate	pattern
compute	logic

Error	
threshold

Approximate
pattern

x	x		x	..	x

Figure 6: FP-VAXX Microarchitecture.

4 IMPLEMENTATION OF APPROX-NOC
In this section, we first present the VAXX implementation for an
underlying FP-COMP mechanism, namely FP-VAXX. Next we de-
scribe the implementation for a DI-COMP mechanism, namely DI-
VAXX. Then we discuss about the latency overhead due to the
approximation mechanisms.

4.1 Frequent-Pattern Mechanisms
First, we briefly describe the Frequent-Pattern Compression (FP-
COMP) technique and then propose low cost microarchitectural im-
plementation for FP-VAXX. Previous research [5] has proposed an
FP-COMP mechanism for data compression and [12] has extended it
for NoCs with low overhead decompression which we adopt in this
work. The mechanism compresses a static set of frequent patterns as
shown in Figure 5, whereas DI-COMP mechanism detects recurring
patterns during run time. The FP-COMP mechanism detects a match
on one of the pattern types and sends adjunct data along with the en-
coded index. Therefore FP-COMP incurs additional decompression
complexity due to variable length compression.

4.1.1 FP-VAXX Implementation

Figure 6 depicts the microarchitectural overview of the VAXX im-
plementation for FP-COMP. For each data word, we first compute
the approximate pattern, using the AVCL. Once the don’t care bits of
the word are determined, the rest of the data word (shaded portion in
the figure) is matched with the corresponding portion of the frequent
patterns in the Pattern Matching Table (PMT) to find a match and

compress on a frequent pattern hit. We propose to utilize a content
addressable memory based (CAM) based structure to implement
the PMT structure for fast matching. By doing this only the bits,
which can be approximated according to the value error threshold,
are candidates for approximation and the rest of the pattern must be
a complete match to a frequent pattern for compression. For data
that is not annotated to be approximable, the AVCL is bypassed to
enable exact matching for given data words.

4.2 Dictionary-Based Mechanisms
Dictionary-based Compression (DI-COMP) keeps track of recurring
data patterns dynamically and maintain an encoded-index consis-
tency between senders and receivers so as to compress any occur-
rences of those data patterns in future communication between these
senders and receivers. To track recurrent data patterns and maintain
the dictionary, we propose to use a table-based mechanism similar
to the one proposed in [17]. Figures 7(a) and (b) show the microar-
chitectural depictions of an example encoder and decoder pattern
matching tables (PMTs) with size of 4 entries, respectively, in a
(3x3) NoC. In the encoder PMT each entry contains a data pattern,
frequency counter and a vector of encoded indices, each correspond-
ing to one destination router (decoder), i.e. in a N node NoC each
entry will have a vector of (N-1) encoded indices. For a data pattern
in the encoder PMT, the vector of indices indicates whether this data
pattern can be compressed for a particular destination in the network.
In addition, the encoder PMT can have different encoded index val-
ues for different destinations, for the same data pattern, since each
decoder performs detection in an independent fashion. The decoder
PMT entries consist of the data pattern, frequency counter, encoded
index and a vector of (N-1) valid bits, one for each of the N-1 en-
coders. The decoders detect recurrent data patterns and place them
in decoder PMTs while sending an update notification to the encoder,
with the new encoded index. The vector of valid bits indicates all the
encoders that also have this data pattern in their PMTs and is used
when replacements happen to invalidate the pattern at all encoders.
In the example shown in Figures 7 (a) and (b), the encoder PMT at
node 3 stores the indices for patterns 0000 and 1111 for destination 6
while the decoder PMT at node 6 has valid bits set for the respective
patterns for node 3.

4.2.1 DI-VAXX Implementation

In order to optimize the microarchitectural cost of implementing
VAXX matching with the DI-COMP mechanism we modify the oper-
ational flow of the approximation as described in Section 3. Instead
of passing a given data block through the AVCL before reaching
the compression logic we integrate tightly the AVCL with the DI-
COMP scheme. We propose to compute the approximate pattern for
every reference pattern, at the time of the pattern being recorded,
in the DI-COMP scheme and save the approximate versions of the
reference patterns. This way any given pattern can be compared to a
set of approximate patterns for fast matching and hence the AVCL
is removed from the critical path of the packetization.

We propose to use a Ternary Content Addressable Memory (TCAM)
structure to optimize the time required to perform value-based ap-
proximation. TCAMs function similar to a CAM, and in addition to
0 or 1, a third state of “x” (don’t care) is allowed, i.e., in a TCAM
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Figure 7: The Encoder PMT at Node 3 and the Decoder PMT
at Node 6.
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Figure 8: DI-VAXX Microarchitecture.

we can actually store 10xx for a pattern (1001) and the table entry
will result in a match for the patterns 1000, 1001, 1010 and 1011.
The decoders utilize a regular CAM structure to recover the origi-
nal pattern (1001) based on the index. The microarchitecture of the
TCAM-based encoder PMT microarchitecture is shown in Figure 8
and the operation is explained below:

• The receivers (decoders) detect frequent data patterns and
send an update to the encoders to reflect in the PMT.

• When the encoder receives an update, instead of just storing
the original pattern it computes the approximate pattern
with don’t care bits (e.g. 1001 –> 10xx) based on the error
threshold, using the Approximate Pattern Compute Logic
(APCL). Then the encoder records the approximate pattern
in the TCAM and stores the index for the corresponding
receiver. If a matching TCAM entry was already present
the encoder just updates the index.

• When a data pattern arrives at the encoder, the TCAM is
accessed and in case of a hit the encoded index is used for
compression. This way the latency overhead on the critical
path of compression is reduced.

For data packets that are not annotated for approximation this
TCAM-based mechanism cannot provide compression since a TCAM
match does not guarantee that the recovered pattern at the receiver is
the same pattern the sender intended to transmit (e.g. 8 can match in
TCAM and be recovered as 9). To facilitate exact matching along
with approximate matching, we propose to add storage capability
in the encoders for the original patterns in addition to the TCAM
entry (approximate pattern). Figure 8 shows the encoder PMTs with
the original pattern storage. Each TCAM entry can have multiple
original patterns because different receivers (decoders) could have
detected different patterns in the range of values. We propose to
store multiple original patterns for each entry and this way when a
data pattern which cannot be approximated arrives at the encoder,
first the TCAM entry is matched and then an exact match on the
corresponding original pattern (based on receiver) is checked before
compressing it. The storage overhead can be optimized by storing
only the bits of the original pattern that were made don’t cares in the
approximate pattern.

4.3 Latency Overhead
We assume a three cycle compression latency (two cycles matching +
one cycle encoding) and two cycle decompression latency overhead
for each cache block as mentioned in [12]. To ensure that the DI-
VAXX and FP-VAXX matching can happen within the provisioned
compression latency, based on the latency overhead evaluations we
propose parallel hardware matching units. In case of DI-VAXX
and FP-VAXX we have 8 parallel TCAM matching units since
two matches per cycle in each unit is possible based on the model
from [1] and in addition FP-VAXX requires 8 APCL units.

In addition, we propose to use two latency hiding optimizations to
reduce the compression overhead. First, we propose to perform the
virtual channel arbitration of the packet, using the header flit which
is not compressed, in parallel with the compression. We amortize
the compression overhead with the NI queueing time, i.e, if there
are previous packets waiting in the queue, the compression overhead
would not add to the critical path network latency of the packet.

5 EVALUATION
In this section we first explain our experimental setup and then
present the evaluation of the APPROX-NoC framework.

5.1 Methodology
Experimental Setup. We evaluate our APPROX-NoC framework
using a cycle accurate, in house NoC simulator and a full system
simulator, gem5 [10]. We implement the DI-VAXX and FP-VAXX
mechanisms in addition to the DI-COMP and FP-COMP mecha-
nisms [12, 17] in both the simulators. For detailed network impact
evaluations we use the NoC simulator where we set the default error
threshold as 10% and the percentage of approximable data packets is
set to 75%. We later perform sensitivity studies to show the impact
of varying these parameters. To evaluate the impact of our APPROX-
NoC mechanism on the overall application output error, we utilize
the Pin [22] tool for instrumentation. We hand-annotate the bench-
marks mentioned below, in similar fashion to Doppelganger [23], to
identify the data regions which can be approximated. The VAXX
mechanism uses the knowledge of the data type (floating point or
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Figure 9: Average Packet Latency Breakdown and Overall Approximation Quality.
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Table 1: APPROX-NoC Simulation Configuration.

32 Out-of-Order Cores at 2GHz
System parameters 32KB L1I$and 64KB L1D$, 2-way

2MB L2$ and 16 directories
Cache Coherence: MOESI_hammer

4×4 2D concentrated-mesh
2GHz three stage router

NoC parameters 4 Virtual channels(4-flit buffer)
64-bit flit size

wormhole switching, XY routing
Error threshold 5%, 10%(default), 20%
Approximable 25%, 50%

data packet ratio 75%(default)
Dictionary-based 8 entry PMT

mechanisms

integer) of variables in each benchmark to determine the approxima-
tion operation. An important consideration while hand-annotating
approximable data regions of benchmarks is the data type of the
variables being determined to be approximable. We assume that
the data type of the cache block being compressed is known to the
APPROX-NoC framework and we conservatively only compress
cache blocks in which all the words have the same data type. This is
because knowledge of the data type of each word would require sig-
nificant metadata overhead. We use gem5 to evaluate the impact of
our approximation mechanism on the overall system. The APPROX-
NoC configuration and the NoC parameters used for our evaluation
are listed in Table 1.

Workloads. We utilize benchmarks from the PARSEC [9], with
simlarge, which have been previously utilized for evaluating approx-
imation mechanisms [24]. In addition, we explore the approximation

opportunities in big data analytics by modifying SSCA2 [8], a data in-
tensive graph benchmark, to evaluate betweenness centrality (BC) in
real-world graphs [20]. BC is a popular graph analysis technique to
identify important entities in large-scale networks. We approximate
the floating-point pair-wise dependencies that is used for centrality
calculation. Such applications in big data analytics can leverage
approximation in data segments (e.g. weights in graphs) within a
tolerable error margin since most algorithms approximate the result
by only evaluating on a subset of the data with sampling. We run the
benchmarks using gem5 [10] to evaluate the impact of our mecha-
nisms on the system performance and to collect the communication
traces for the region of interest, which are then fed into our NoC
simulation environment and simulated for 100 million cycles for
detailed NoC evaluations. To evaluate the throughput impact we uti-
lize synthetic workloads. We collect the data injected at each node,
from the gem5 benchmark traces and utilize the data traces to create
data packets in the synthetic workloads. This way, the synthetic
workloads can be used to vary the traffic pattern/injection rate but
the data being communicated can be kept constant and correlated
with data locality in the benchmarks.

5.2 Performance Analysis
In this section we present the NoC level performance evaluation
of the APPROX-NoC framework using benchmarks from different
application suites and synthetic workloads. We first, analyze the
performance impact of APPROX-NoC on the average packet latency,
compression ratio, then use synthetic workloads to evaluate the
impact on network throughput.

5.2.1 Performance Analysis

Average Packet Latency. The average packet latency comparison,
in a 4x4 2D concentrated mesh NoC, for the two implementation
of APPROX-NoC is shown in Figure 9. Across the benchmarks
DI-VAXX reduces the average packet latency by 11% with respect
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to DI-COMP and 40.7% compared to Baseline. FP-VAXX achieves
up to 21.4% and 46.5% latency reduction compared to FP-COMP
and Baseline, respectively. This is mainly due to the fact that ap-
proximation allows for more reduction in the number of injected
flits leading to performance benefits, especially when the network
is congested during the bursty phases. The large packet latency re-
duction in SSCA2 graph benchmark is owing to the data intensive
nature of the application. With a large data set, the limited cache
size cannot hold the whole working set of the benchmark, and hence
its irregular data accesses incur large volume of data movement. We
expect that data intensive applications, in big data era, that have a
high ratio of data movement to computation traffic will benefit from
APPROX-NoC.

Note that the queuing latency decreases significantly by introduc-
ing approximation since the single-flit control packets face lesser
blocking delays caused by the long data packets. The decoding la-
tency portion of the average packet latency is negligible because it is
amortized over the large number of control packets, and also compen-
sated by the reduced queueing latency. In addition, it is interesting
that the VAXX techniques have larger impact on packet latency with
the FP-VAXX mechanism compared to the DI-VAXX. This is be-
cause the DI-VAXX mechanism needs to learn the data locality at the
beginning of each new communication phase by tracking and updat-
ing its locality tables, thereby loosing approximation opportunities.
In contrast, the FP-VAXX can use the static patterns across the whole
program execution. For some benchmarks (bodytrack, canneal, flu-
idanimate), VAXX only achieves moderate improvement. This is
because packets in these benchmarks have low queueing and net-
work latency and the flit reduction translating to lower serialization
latency is offset by the approximation/compression/decompression
overheads. In addition, the percentage of data packets injected is
very minimal compared to control packets, and hence the reduction
in data flits does not show a significant impact on overall packet
latency. The low queuing latency also supports the argument of low
data to control packet ratio.
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Figure 11: Reduction in Number of Injected Flits.

Approximation Effectiveness. The reduction in traffic load is
shown by plotting the number of data flits injected under each
APPROX-NoC mechanism in Figure 11. The DI-VAXX mecha-
nism reduces the number of data flits injected by 3% and 38%
compared to the DI-COMP and Baseline, respectively. Similarly,
FP-VAXX reduces data flit volumes by 19% and 45% with respect to
FP-COMP and Baseline, respectively. The moderate traffic reduction
in streamcluster and swaptions benchmarks when juxtaposed with
the large latency improvement seems to be counter intuitive. This
can be explained by two reasons. Firstly, the value approximation
enables injection acceleration for critical data, thereby translating to

reduced queuing latency for the many short packets that are blocked.
Therefore even though the reduction in injected flits is small the
effective resulting latency reduction can be amplified. In addition,
in dynamic compression, approximation may change the learnings
of the DI-COMP mechanism, which might affect the compression
chance of data that is required to be precise. Hence the overall flit
reduction might be smaller due to changes in the operation of the
DI-COMP learning. But overall we observe that the network traffic
reduction translates to average packet latency improvement.

This is further supported by Figure 10 (a), which shows the break-
down of the fraction of encoded words to exact compression and
approximated compression. We observe that the VAXX technique
increases the encoded word fraction by up to 18% for DI-VAXX
compared to DI-COMP and up to 37% for FP-VAXX over FP-COMP.
Figure 10 (b) depicts the effectiveness of value approximation in
improving the compression ratio. DI-VAXX and FP-VAXX enhance
the compression ratio by up to 21% and 41% compared to the corre-
sponding compression schemes, respectively. On average, the two
VAXX implementation increase compression ratio by 10% and 30%.
Figures 10 and 11 show that the reduction in number of injected flits
does not scale proportionally to increase in compression rate due to
approximation. This is because of internal fragmentation in the 8B
flits where a large portion of the tail flit can be empty, since the NR
might not be a multiple of 8B.

Data Value Quality. Figure 9 also depicts the data value quality
for each benchmark, i.e., even though the error threshold is checked
for approximating each word, the incurred error differs from word
to word, so we compute the actual overall data error incurred across
the benchmark execution and show the overall data value quality
achieved. Across the benchmarks, though we allow for 10% error
rate the effective data value quality is higher than 97%, which is due
to a portion of the words being compressed without error and most
of them matching with close proximity. Note that this is the quality
of the integer and floating-point data values, and we analyze how
this variance translate to overall application output error later.

5.2.2 Throughput Analysis

We use synthetic workloads to analyze the impact of APPROX-
NoC on the network throughput. Figure 12 plots the throughput
of the APPROX-NoC mechanisms compared against the Baseline,
DI-COMP and FP-COMP compression schemes. We plot for data
traces from blackscholes and streamcluster benchmarks, and for
the Uniform Random (UR), Transpose (TR) traffic patterns. The
simulations are run for 1 million cycles and we assume a 25:75 data
to control packet ratio to emphasize the significance of APPROX-
NoC when large amount of data is communicated.

When compared to the compression schemes, VAXX improves
the throughput by up to 40% for UR and 69% for TR traffic patterns.
This gain is achieved by reducing the effective injection load, due to
approximating data. The huge increase in throughput compared to
the latency benefits observed from benchmarks can be attributed to
the larger ratio of data packets being injected. Another interesting
observation is that the DI-VAXX perform better than the FP-VAXX.
This is because of higher data value and temporal locality in the
synthetic workloads at higher injection rates with larger data packet
ratio. From our observations, the dynamic dictionary-based scheme
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Figure 12: Throughput Analysis with Different Benchmark Data Traces Under Uniform Random (UR) and Transpose (TR) Traffic
Patterns.

tends to work well for applications with high data locality and inten-
sive data movement due to its learning capability, while the static
frequent pattern scheme tends to work well for applications with
many frequent patterns and short communication phases without
learning.

5.3 Sensitivity Studies
In this section we show the sensitivity of APPROX-NoC mecha-
nisms to the error threshold and the percentage of approximable data
packets.

5.3.1 Error Threshold

Figure 13 shows the average packet latency across the APPROX-
NoC mechanisms for all the benchmarks by varying the error thresh-
old. As the error threshold is increased from 5% to 10% (default)
to 20% the impact of the APPROX-NoC mechanisms on packet
latency amplifies due to the increased chance of approximate match-
ing. One interesting observation is that FP-VAXX mechanism does
not seem to have a significant impact on the packet latency even
though a higher error threshold is allowed. The reason for that is
our approximation technique can translate the approximate value
into higher compression ratio even with small error threshold. It is
well matched with the static frequent pattern compression. Despite
the moderate latency improvement, we also observe that FP-VAXX
incurs more overall error compared to DI-VAXX. This is because in
the FP-VAXX mechanism, we always try to match with the highest
priority frequent pattern in the PMT even though an exact match is
available at lower priority. Hence some of the exact matches, when
error threshold was lower, might be converted into approximate
matches as the error threshold is increased. So these scenarios can
lead to additional error incurred without latency benefits.

5.3.2 Approximable Packets Ratio

Figure 14 shows the average packet latency for the APPROX-NoC
mechanisms across benchmarks as the percentage of packets ap-
proximable is varied. The packet latency benefits improve as the
percentage of approximable packets increases due to the enhanced
chances of approximate matching. This can be observed significantly
in SSCA2, swaptions, streamcluster with both DI-VAXX and FP-
VAXX, while the other benchmarks do not show compelling latency
reduction as the percent of approximable packets is increased. The is
due to the low queuing latencies in the NoC and small data-to-control
packet ratio for these benchmarks leading to minimized impact of
data flit reduction on the overall network latency.

5.4 Full System Impact Analysis
In this section we use Pin [22] and gem5 [10] based evaluations
to analyze the impact of APPROX-NoC on the overall system. We
present the overall application output errors and the overall runtime
impact due to approximation on different benchmarks.

Overall Application Output Error. We analyze the impact of
our mechanism on the overall application output quality in addition
to the data quality using the Pin [22] instrumentation framework.
We implement our approximate functionalities on top of a coherent
cache simulator tool. We model a system with 16 cores and each
core has a 64 KB two-way L1 private data cache of cache line size
of 64 Bytes. We emulate packet response whenever a miss happens,
that requires a data response from another node.

To evaluate the applications’ output quality, we extend application-
specific accuracy metrics based on prior approximate computing re-
search [23, 24, 29, 32]. In addition, we exploit value approximation
opportunities in big data domain by studying a graph processing
benchmark SSCA2. SSCA2 calculates the betweenness centrality
scores of the nodes in a small world network to identify the key enti-
ties. So we evaluate the pair-wise betweenness centrality difference
between the approximate output and its precise counterpart for error
calculation.

Applications’ output accuracy for all benchmarks are shown in
Figure 16. With the predetermined 10% data noise margin, all the
benchmarks are well controlled within the error bound except for
streamcluster. This because by approximating the coordinates, the
cost between points and centers might deviate from the precise
one and lead to mismatch of centers between the approximate ver-
sion and precise version. As mentioned in previous work, through
approximate space exploration or training during compilation we
can improve the accuracy while maintain the performance bene-
fit [29, 32].

In Figures 17, we show the application output of bodytrack’s
approximated and precise pair. The two figures are very similar
and the difference is hardly captured through human vision. In this
experiment, we allow for 10% error threshold in the data and observe
that the overall output vectors differ by 2.4%.

Figure 16 also shows the output accuracy with different error
thresholds. Even with 20% error budget, the applications’ output
errors are close to 5% except for streamcluster and swaptions. With
the bounded data error control, APPROX-NoC can achieve high
throughput and low latency by exploiting approximate communica-
tions while maintaining acceptable output quality.
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Figure 13: Error Threshold Sensitivity Analysis.
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Figure 14: Approximable Packets Ratio Sensitivity Analysis.
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Figure 15: Dynamic Power Consumption Normalized to Base-
line.
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formance.

Overall Application Performance. Next we analyze the impact
of APPROX-NoC on the overall system performance. We config-
ure a 64-core CMP connected by an 8x8 mesh network, and run
the benchmarks for 100 million instructions with medium input
size. Figure 16 also shows the normalized performance for different
benchmarks with the proposed approximation mechanism as the
error threshold allowed is varied, normalized to 0% error threshold
allowed. We observe that the performance is improved by upto 10%

and 14% in swaptions and SSCA2, respectively, while we see mod-
erate improvements on the rest of the benchmarks. This is because
swaptions and SSCA2 have higher degree of sharing in the approx-
imable region of interest in the application code compared to the
other benchmarks. Higher degree of sharing leads to a significant
amount of similar approximable data being transferred across the
NoC during the execution of these benchmarks, thereby improving
the efficacy of our mechanism in impacting the overall performance.

5.5 Power Consumption and Area Overhead
In this section, we evaluate the effect of APPROX-NoC on the
network power consumption and area overhead, while taking into
consideration the overhead of approximate matching and compres-
sion/decompression. The static power consumption does not vary
across benchmarks and the static power overhead of all the APPROX-
NoC mechanisms is minimal compared to the large baseline static
power consumption. Hence to show the variation in power con-
sumption between APPROX-NoC mechanisms and benchmarks, we
depict dynamic power consumption in Figure 15. The best perform-
ing FP-VAXX mechanism reduces the dynamic power consumption
on average by 5.4% compared to baseline and 1.3% compared to
FP-COMP. Note that this can be primarily attributed to the reduction
in the number of injected flits which compensates for the power
overhead of VAXX techniques.

Based on the hardware requirements we evaluate the area over-
head of the APPROX-NoC encoders using CACTI [26] and verilog
based area analysis with 45nm technology. The DI-VAXX incurs
0.0037 mm2 for each NI (router). Similarly, FP-VAXX require an
overhead of 0.0029 mm2. The decoder design does not change be-
tween the schemes and the overhead is as mentioned in [12].



APPROX-NoC ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

(a) Precise Output.

(b) Approximate Output.

Figure 17: Approximate versus Precise Output of Bodytrack.

6 RELATED WORK
In this section we discuss the related work in hardware approxima-
tion techniques and NoC data compression.

Approximation. Significant research has been done regarding
approximated computation and data storage in hardware for ap-
plications that allow inaccurate outputs. Sampson et al. [29–31]
proposed code annotations and compiler framework for the pro-
grammers to define the data/computations in the application that
can be approximated. They also propose hardware mechanisms like
voltage scaling, reducing DRAM refresh rate and SRAM supply
voltage, width reduction in floating point computations for energy
savings. Esmaeilzadeh et al. [14] propose dual voltage operation
where precise computations use high voltage mode and approximate
operations use the low voltage mode. Previous research has also
proposed energy efficient accelerators based on neural networks and
analog circuits [15, 25, 33, 35]. Liu et al. [21] propose to reduce
the refresh rate of DRAM memories which store data, that can be
inaccurate, using application level input. Miguel et al. [23] propose,
Doppelganger, a cache mechanism which eliminates the storage of
cache blocks with data that is similar (need not be exact match). They
keep the tags for all the cache blocks, but if two cache blocks are

similar then only one is stored and both the tags point to this block.
Our mechanism proposes to eliminate the transmission of similar
cache blocks by encoding data to a similar data pattern, that is being
tracked, at the source node (memory/cache) and hence can work in
synergy with approximate storage mechanisms like Doppelganger
cache.

NoC data compression. Previous research has explored data
compression in NoCs. Das et al. [12] explored compression in caches
and the NI of the routers while proposing techniques to amortize the
decompression latency with communication latency. They observe
that across wide range of workloads data compression leads to sig-
nificant network power savings and performance benefits. Zhou et
al. [37] proposed a data compression mechanism in packet-based
NoC architectures by tracking frequently repeated values in the on-
chip data traffic. Zhan et al. [36] introduced a base-delta compression
technique in NoCs to exploit the small intra-variance in data com-
munication. Jin et al. [17] proposed a data compression mechanism
that learns frequent data patterns using a table-based mechanism
and adaptively turns the compression on/off based on the efficacy of
compression on the network performance. APPROX-NoC proposes
to compress the data traffic by facilitating approximate matching
with an online error control mechanism.

7 CONCLUSIONS AND FUTURE WORK
In this work we propose APPROX-NoC, a hardware data approxima-
tion framework for high throughput NoCs in the memory intensive
big data era. We present a value based approximate matching tech-
nique to use in a plug and play fashion with any underlying data
compression mechanism. We also detail low cost microarchitec-
tural implementations of the VAXX techbique with state-of-the-art
dictionary-based and frequent pattern-based NoC data compression
mechanisms. Our evaluation results show that the best APPROX-
NoC mechanism reduces the average packet latency up to 21.4%
over state-of-the-art NoC data compression mechanism. In addition,
our evaluation results with synthetic workloads show that the best
APPROX-NoC mechanism improves throughput up to 60% com-
pared to state-of-the-art compression mechanisms. We observe that
the FP-based mechanisms achieve higher approximation rate and
hence performance benefits across the benchmarks, but the DI-based
mechanisms outperform the FP mechanisms when there is signif-
icant data repetition. On average the application output quality is
always above 99% across the benchmarks even though a 10% error
threshold is allowed since a large portion of the words are within
close proximity. As future work, we intend to leverage this high
approximation quality by using window based instead of word based
error threshold, i.e., use cumulative error threshold over a set of
data words defined by a window, so as to achieve more approximate
matches. This can be applicable especially in cases of video/image
applications where the error rate over a frame is more appropriate
than a conservative per word error threshold.
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