
Packet Coalescing Exploiting Data Redundancy in GPGPU
Architectures

Kyung Hoon Kim, Rahul Boyapati, Jiayi Huang, Yuho Jin†, Ki Hwan Yum, Eun Jung Kim

Department of Computer Science and Engineering, Texas A&M University, †Advanced Micro Devices, Inc

khkim,rahulboyapati,jyhuang,yum,ejkim@cse.tamu.edu,Yuho.Jin@amd.com

ABSTRACT

General Purpose Graphics Processing Units (GPGPUs) are becoming

a cost-effective hardware approach for parallel computing. Many

executions on the GPGPUs place heavy stress on the memory sys-

tem, creating network bottlenecks near memory controllers. We

observe that data redundancy in communication traffic is common-

place across a wide range of GPGPU applications. To exploit the

data redundancy, we propose a packet coalescing mechanism to

alleviate the network bottlenecks by directly reducing the traffic

volume. The key idea is to coalesce multiple packets into one with-

out increasing the packet size when they carry redundant cache

blocks. To ensure that the coalesced packets are delivered to their

respective destinations, we adopt multicast routing for the inter-

connection network of GPGPUs. Our coalescing approach yields

15% IPC improvement (up to 112%) in a large-scale GPGPU with

2D mesh across various GPGPU applications, by reducing average

memory access time (AMAT) by 15.5% (up to 65.2%) and obtaining

network bandwidth savings by 13% (up to 37%). Also, our coalesc-

ing approach achieves 7% IPC improvement in the NVIDIA Fermi

architecture with the crossbar.

CCS CONCEPTS

•Computer systems organization →Single instruction, mul-

tiple data;

KEYWORDS

GPGPU, Packet Coalescing, Multicast, Inter-core Locality

ACM Reference format:

Kyung Hoon Kim, Rahul Boyapati, Jiayi Huang, Yuho Jin†, Ki Hwan Yum,

Eun Jung Kim. 2017. Packet Coalescing Exploiting Data Redundancy in

GPGPU Architectures. In Proceedings of ICS ’17, Chicago, IL, USA, June 14-16,

2017, 10 pages.

DOI: http://dx.doi.org/10.1145/3079079.3079088

1 INTRODUCTION

Modern GPGPUs, equipped with a large number of computation

units, provide energy-efficient executions for a wide variety of high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’17, Chicago, IL, USA

© 2017 ACM. 978-1-4503-5020-4/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3079079.3079088

throughput data parallel applications. GPGPUs consist of multi-

ple Streaming Multiprocessors (SMs), each comprising multiple

compute units, and a set of on-chip Memory Controllers (MCs)

connected via scalable Networks-on-Chip (NoCs) [3][11][32]. An

enormous amount of parallel thread executions in GPGPUs place

heavy stress on the memory systems causing the memory band-

width to become the critical performance bottleneck [3][11][32].

The memory bottleneck leads to long memory access latencies in

GPGPUs, which are hidden by fine-grained thread context switch-

ing [2][16][30].

As technology scales, the number of MCs in the GPGPUs does

not scale with the SMs due to on-chip pin bandwidth limitation [17].

This exacerbates the memory bottleneck and renders the latency

hiding less effective, due to increased AMAT, eventually leading to

significant overall system performance degradation. A considerable

portion of AMAT is caused by the MC bottlenecks where a large

amount of reply data from MCs to SMs cannot be injected into the

network due to restricted terminal bandwidth at the MC routers

even when the data is ready to be sent [3]. The MC bottlenecks

are even more aggravated by network hotspots in the NoC near

the MCs that cannot transfer a large volume of traffic fast enough

due to limited network bandwidth [11]. Therefore, it is critical to

explore solutions in the NoC to alleviate the MC bottlenecks.

There have been previous studies on designing NoCs tailored to

GPGPUs. Bakhoda et al.[3] proposed to provide additional terminal

bandwidth using a multiport router design for the MC nodes. Such

a design can alleviate the congestion problem at the MC routers

by providing additional injection/ejection capabilities but does not

reduce the underlying traffic directly. This design also becomes

cost-ineffective as the GPGPUs scale up, thereby aggravating the

MC router congestion. Recent work has attempted to investigate

the issues of virtual channel (VC) allocation for request/reply traffic,

MC placement, routing algorithm and network topology to find the

optimal NoC design for GPGPUs [11][32]. However, none of these

studies tried to solve the MC bottleneck issue in the standpoint of

reducing the traffic volume, which we believe is critical to address

the issue.

We propose a packet coalescing mechanism that reduces NoC

traffic volume by exploiting data redundancy in the GPGPU com-

munication traffic. The proposed mechanism coalesces multiple

packets that exhibit data redundancy into a single packet without

increasing the packet size, thereby reducing the number of packets

injected into the network. Data redundancy in GPGPU communica-

tion stems from data sharing among multiple SMs, called inter-core

locality [20]. We introduce a packet coalescing unit (PCU) in the

MCs which captures a group of memory requests with inter-core

ICS ’17, June 14-16, 2017, Chicago, IL, USA K. H. Kim et al.

0

20

40

60

80

100

T1 T2 T1 T2

NQU RAY STO DWT NW AES MUM KM 2MM SC 3DCV 2DCV LPS WC HS SpMV CUTCP PF SS BT BP HISTO SRAD2 GE NN LUD BFS PVC PVR AVG

La
te

nc
y

D
is

tri
bu

tio
n

(%
)

Request Packet Lat Memory Lat Reply Packet Lat

(a) L1 Cache Miss Penalty

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

T1 T2 T1 T2

NQU RAY STO DWT NW AES MUM KM 2MM SC 3DCV 2DCV LPS WC HS SpMV CUTCP PF SS BT BP HISTO SRAD2 GE NN LUD BFS PVC PVR AVG

M
C

 S
ta

ll
Ti

m
e

R
at

io
 (%

)

(b) MC Stall Time

Figure 1: MC Bottlenecks in GPGPUs across 29 Benchmarks (T1: 2DMesh, T2: Crossbar)

locality from multiple SMs, and generates a single read reply packet

destined for the requesting SMs. Tomake sure that the single packet

is delivered to all the SMs, we adopt an existing multicast routing

for GPGPUs. In this paper, we make the following contributions.

• We propose a new packet coalescing mechanism that alleviates

the MC bottlenecks through traffic volume reduction.

• We adopt a multicast routing algorithm that delivers coalesced

packets to SMs. To the best of our knowledge, this is the first

work showing a good use of multicast in GPGPU applications.

• We analyze the MC bottleneck issue and inter-core locality

common across various applications and characterize applica-

tions with inter-core locality.

• We comprehensively evaluate the proposed coalescing tech-

nique across various applications from GPGPU-SIM [4], Ro-

dinia [6], Mars [9], Polybench [10], and Parboil [28] bench-

mark suites. Our coalescing approach yields 15% IPC improve-

ment on average in a large-scale GPGPU with 2D mesh by

reducing AMAT by 15.5% and obtaining network bandwidth

savings by 13%. Also, our coalescing approach achieves 7%

IPC improvement in the NVIDIA Fermi architecture with the

crossbar.

2 MOTIVATION

In this section, we explain the MC bottleneck issue in a GPGPU

with a 2D mesh/crossbar interconnect and motivate our proposed

mechanisms based on the observation of widely common data

redundancy in GPGPUs.

2.1 MC Bottleneck

A large amount of parallelism in GPGPUs places heavy stress on

the limited number of MCs on the chip, especially because L2

cache banks are located only in the MC nodes, and hence every

L1 cache miss access is destined for one of the MCs through an

interconnection network. The communication patterns in GPGPUs

are many-to-few in the request network from many SMs to a few

MCs, and reversely few-to-many in the reply network from a few

MCs to many SMs [3].

To understand the key reason of the MC bottlenecks, we analyze

L1 cache miss penalty of AMAT in two different scales of GPGPUs.

We model a large-scale GPGPUs of 56 SMs and 8 MCs with 2D

mesh [11], while we do NVIDIA Fermi architecture of 15 SMs and

6 MCs with the crossbar [25]. Through these experiments, we see

severe bottlenecks occur in both GPGPUmodels and the bottlenecks

are mainly due to a large volume of traffic highly skewed toward

the reply network.

Figure 1a1 shows the breakdown of L1 cache miss penalty mea-

sured for all memory requests across 29 benchmarks. The penalty

is divided into three latencies: request packet latency, memory

latency, and reply packet latency. The request and reply packet

latencies are calculated from the time packet’s flits are created to

the moment when its tail flit is accepted in the final destination.

The memory latency is from the time a request packet is accepted

by an MC to when a corresponding reply packet is created.

The MC bottlenecks are presented in the request packet latency

that is asymmetrically longer than the reply latency. The average

request latency is 10 and 2 times higher than the reply latency in 2D

mesh and crossbar, respectively. It is due to the backpressure from

the highly congested reply network to the request network. Once

reply data is read from memory systems, it stays in MC reply queue

placed between MC and its Network Interface (NI) input queue,

waiting for being sent to the network. As the reply network gets

more congested, the MC NI input queue is full, and thus reply data

cannot be sent immediately and keeps waiting in MC reply queue.

When the reply queue becomes full, an L2 cache cannot accept a

request in MC request queue that stores newmemory requests from

SMs. It is because the reply queue has no more space to store reply

data when the request hits the L2 cache. Then, request packets

continue to wait in the request network until the MC request queue

has available space, resulting in a long request latency.

To quantify the severity of MC bottlenecks, we measure the

ratio of average MC stall time out of the total execution time for

each benchmark. We count the stall time when MCs cannot inject

packets due to the MC NI input queue being full. The average MC

stall time ratio in 2D mesh is 40.4% as shown in Figure 1b. Such

1To analyze MC bottlenecks in the interconnect perspective, we present the L1 cache
miss penalty rather than SM stall cycles. Due to severe response delay by the bottle-
necks, the performance is highly affected by the miss penalty, although GPGPUs are
designed for hiding latency.

Packet Coalescing Exploiting Data Redundancy in GPGPU Architectures ICS ’17, June 14-16, 2017, Chicago, IL, USA

0
10
20
30
40
50
60
70
80
90

100

In
te

r-c
or

e
Lo

ca
lit

y
R

at
io

 (%
)

120 240 480 960 1920

(a) Inter-core Locality Ratio

0
10
20
30
40
50
60
70
80
90

100

In
te

r-c
or

e
Lo

ca
lit

y
Ty

pe
 D

is
t (

%
) L1D (RO) L1D (RW) L1C L1T L1I

(b) Types of Accesses with Inter-core Locality

Figure 2: Data Redundancy across 29 Benchmarks in 2DMesh

frequent MC stall has been also observed by earlier GPGPU NoC

design work [3]. Interestingly, MCs in the crossbar incorporated by

modern GPGPUs also stall 25.1% of execution time, particularly in

memory-intensive applications. Consequently, the MC bottleneck

increases AMAT and, in turn, degrades the overall system perfor-

mance. Therefore, it is crucial to reduce the stalls by fundamentally

reducing the number of packets sent to the MC NI input queue.

2.2 Data Redundancy

Data Sharing among SMs. Inter-core locality occurs when mul-

tiple SMs send requests to the same cache block within a relatively

short period of time. In order to quantify its potential and temporal

locality, and identify its sources, we analyze cache block access

patterns in each MC across a wide-range of applications.

Once a read request arrives at an MC router, it is sent to L2 cache.

Between them, we capture all read requests that are going to access

the same cache block. To do this, we maintain a table where a cache

block address is associated with the number of accesses in each

entry. If a cache block address of a request does not exist in the table,

a new entry is allocated, storing the block address and initializing

the number of accesses to one. The entry is deallocated after a fixed-

length time window. If a block address of a request does exist, the

number of accesses increases by one. To capture all requests, the

number of entries is assumed to be unlimited. Five time windows

such as 120, 240, 480, 960 and 1920 cycles are adopted by taking

multiples of the minimum L2 hit latency (i.e. 120 cycles) [25]. An

entry has inter-core locality when it records multiple accesses. The

inter-core locality ratio is measured by the percentage of the total

number of accesses in all entries with inter-core locality out of

the number of all read requests. As shown in Figure 2a, 31% of the

requests have inter-core locality on average, when the time window

is set to 120 cycles. As the time window is increased to 1920 cycles,

the inter-core locality ratio increases up to 51.7%.

Figure 2b shows the distribution of access types with inter-core

locality at the time window of 960 cycles. Inter-core locality mainly

occurs from L1 data (L1D) cache misses by 75% where read-only

data takes 43% and read-write data takes 32%. Modern GPGPUs

do not support cache coherence protocols among SMs [25], but

synchronization method among SMs is often used to avoid data

race circumstances on the read-write data. Other sources of inter-

core locality are cache misses from read-only caches such as L1

instruction (L1I), constant (L1C) and texture (L1T) cache , which

take 16%, 2.8% and 7%, respectively.

Characterization of Applications. The inter-core locality as-

sociated with L1D cache misses occurs when an application is

written to run many threads accessing shared data structures. We

characterize the applications in terms of their computation charac-

teristics on the shared data as follows.

• Pair-wise Computation. In MapReduce framework applications,

Map stage passes a list of key and value pairs to Reduce stage.

Group stage between them sorts the output of Map stage by

keys. In the sorting process, threads fetch and compare data

elements. When the elements that each SM needs exist in a

cache block, inter-core locality occurs. Similarly, SC, CUTCP,

HISTO and SpMV have inter-core locality due to pair-wise

computation features.

• Graph Data Computation. In applications using graph data

such as BFS, BT, NN and BP, a data node is explicitly connected

with neighboring nodes. In their computation flow, they usu-

ally involve checking or obtaining previous data nodes. The

inter-core locality occurs when multiple nodes processed by

different SMs need data from the same previous node.

• Stencil Computation. Applications compute a data point by

using neighboring data points. Although SMs are assigned a

distinct data tile, the boundary regions, called halo regions [22],

around the data tile are redundantly accessed by multiple SMs.

HS, PF, SRADV2, 3DCONV, 2DCONV and LPS belong to this

type.

• Computation with row-wise and column-wise dependency. Ap-

plications such as LUD, GE and 2MM access row and column

data points associated with a data point, to compute the point.

As a large dataset cannot be fit in the shared memory of an

SM, such row/column data is necessary for multiple SMs.

ICS ’17, June 14-16, 2017, Chicago, IL, USA K. H. Kim et al.

L1 Caches

SM

….

….

Memory
Coalescer

SM
Memory

Coalescer
L1 Caches

MC
L2 Cache

PCU

MC
L2 Cache

PCU

Interconnection Network
(Multicast Supported)

destination bits
cache block

destination bits

cache block

NI
Ejection
Queue

NI
Injection
Queue

L2
Cache

MC Reply
Queue

Read Req.

Merge

MC Request
Queue

RGR 1

RGR n

…

HeadTail

Write Req.

MC
L2 Cache

PCU
destination bits
cache block

destination bits

cache block

NI
Ejection
Queue

NI
Injection
Queue

L2
Cache

MC Reply
Queue

Read Req.

Merge

MC Request
Queue

RGR 1

RGR n

…

HeadTail

Write Req.

Write
Buffer

….
P

Figure 3: GPGPU Architecture Incorporating Proposed PCUs

3 PACKET COALESCING UNIT

In this section, we explain our packet coalescing units (PCUs) that

reduce the number of packets by combining multiple packets into

one without increasing the packet size.

3.1 Overview

Figure 3 shows the overall GPGPU architecture integrating PCUs

to MCs. In each SM, memory accesses from threads of a warp are

combined into fewer accesses by a memory coalescer [25]. When

they have L1 cache misses, memory read or write requests packets

are sent to MCs through an interconnection network. The MCs

respond to themwith read reply or write reply packets, respectively.

The read reply packets, which are a key factor of MC bottleneck,

are coalesced by a PCU, before being injected into the network. A

PCU coalesces packets by up to the number of all SMs. To deliver

the packet to final destinations, the interconnection network re-

quires multicast capability that we will discuss in Section 4. In the

following, we explain the details of a PCU.

3.2 Coalescing Mechanism

The proposed coalescing mechanism has two key features. First,

multiple packets are coalesced into a single one without packet

size increase. To coalesce packets one may think of appending

packets back-to-back, but it does not attain our goal of reducing

traffic volume. Instead, to exploit inter-core locality described in

Section 2, we attempt to merge only read reply packets carrying the

same cache block into a single one. The packet header and payload

store multiple destinations and the cache block, respectively. As

the unused space of a packet accommodates the destinations, the

packet has the same size as a normal (i.e. uncoalesced) packet.

Second, coalescing is performed with low latency overhead. One

way of coalescing is to keep track of cache blocks in the MC reply

queue and merge ones with the same contents, while they are in

the queue. Thus, the longer the packet stays in the queue, the

more packets can be coalesced. However, adding extra waiting

time to earlier packets is not desirable since it increases end-to-end

latency. We determine a group of reply packets to be coalesced

when their corresponding requests arrive at an MC. This process is

called Request Grouping. Once a cache block for a group of requests

returns from memory systems, we provide information such as the

cache block and SM ids with NI to generate a packet destined for

the SMs. This process is called Reply Merging. The request grouping

leads to low latency overhead for identifying requests accessing

the same cache block, while the reply merging does no overhead.

Suppose that a request to a cache block arrives at an MC from

SM 1 and there were no requests to the block so far. The request

grouping allows the request to access memory systems and records

SM 1 as a requesting SM. Until the accessed block returns, if sub-

sequent requests to the same block are sent from SM 2 and 3 to

the MC, the request grouping records SM 2 and 3, and it does not

allow them to access memory systems. When the block returns,

the reply merging sends all recorded SM ids (i.e. 1, 2 and 3) and the

cache block to NI that creates a packet destined for the SMs. Now

we describe the details of request grouping and reply merging

Request Grouping. The request grouping is performed in a

static time window that depends on memory access time. When a

request forms a new request group, it is sent to memory systems.

The request group continues to capture all subsequent requests that

access the same cache block as the first one does. The number of

accesses to the same cache block is bound by the number of SMs

since the redundant accesses from each SM are blocked by MSHRs

of L1 cache. This grouping is terminated when a cache block for

the first request returns. This operation is similar to miss status

holding register (MSHR) mechanism of an L2 cache. However,

we introduce the request grouping mechanism before L2 cache

separately to capturemore requests with inter-core locality. GPGPU

has a long L2 cache access time (120 cycles [25]) due to the delay of

raster operation (ROP) unit coupled with an L2 cache. The request

grouping can use it as the minimum time window when a request

hits L2 cache. Upon miss in an L2 cache, the request grouping can

make use of DRAM access time in addition to the L2 cache access

time, which is the maximum time window. The accesses that do

not access the main memory are frequently captured by request

grouping with the minimum time window due to their temporal

locality shown in Figure 2a.

To implement the request grouping, we introduce a Request

Grouping Register (RGR) which groups requests with inter-core

locality by storing a cache block address and their requesting SM

ids. RGR has 1-bit valid field, 41-bit block address field, and 64-bit

destination bits field where each bit position indicates the location

of a requesting SM. The RGR that stores requests with inter-core

locality has multiple bits of destinations bits field set to ones.

We design the request grouping in two stages to perform the

grouping while the MC request queue is full. To send read requests

to L2 cache in their arriving order, we maintain the PCU pointer

ring-buffer where the locations of RGRs are stored according to

their allocation order. The PCU head/tail pointers are used to read

RGRs in that order. The request grouping mechanism operates in

the following manner.

Packet Coalescing Exploiting Data Redundancy in GPGPU Architectures ICS ’17, June 14-16, 2017, Chicago, IL, USA

• Stage 1. When there is an available RGR, a read request is

accepted by PCU. For the read request, all valid RGRs are

sequentially accessed to find a match on the block address. If

there is a hit in a valid RGR, the requesting SM id is stored

in the destination bits field and the request is dropped (not

sent to MC request queue). If an RGR miss occurs, an empty

RGR (the valid field is zero) is located. The requesting SM id

is stored in the destination bits field of the RGR. The accessing

address is also stored in the block address field. The PCU head

pointer is set to next available space in the PCU pointer buffer.

The RGR location is stored at the space.

• Stage 2. Next read request is selected based on an RGR pointed

by the PCU tail pointer. When the PCU head and tail pointers

are the same, no read request is available. If MC reply queue

has available space, a request selector chooses either a read

request from the selected RGR or a write request in a write

buffer in a round-robin way. When the read request is selected,

the block address of the RGR is sent to MC request queue and

the PCU tail pointer is set to next valid RGR.

Reply Merging. We introduce Merge unit that combines multi-

ple replies in a single reply. Merge unit stands between L2 cache

andMC reply queue. When a cache block returns from L2 cache, the

Merge unit obtains the destination bits by accessing the correspond-

ing RGR. Both the cache block and the destination bits are sent to

the MC reply queue. At this point, the RGR is reset by clearing its

valid field for new RGR allocation. The cache block is packetized

by NI as a reply packet for SMs encoded in the destination bits field.

A flit that stores a packet header accommodates the destination

bits in its unused space (e.g. 8B in 2D mesh). If the destination

bits field encodes a single destination, a reply packet is sent to the

destination as a unicast packet. Otherwise, the reply packet is a

multicast packet sent to all requesting SMs, which we will discuss

details in the next section.

4 MULTICAST SUPPORT IN NOC

In this section, we detail multicast support for both large-scale and

NVIDIA Fermi-style GPGPU architectures.

4.1 Overview

First, we present an overview of the NoC architectural details for

both large-scale and NVIDIA Fermi-style GPGPUs. NVIDIA Fermi

architecture uses a global crossbar interconnection network with

destination tag routing [25]. For large-scale GPGPU architectures,

we propose to use a 2D mesh interconnection topology among var-

ious NoC topologies as in [5][11] because the global crossbar is not

a practical solution due to the complexity of layout and huge power

consumption [32]. The efficiency of the proposed packet coalescing

mechanisms, which exploit the application behavior of inter-core

locality, is independent of the underlying interconnection network

topology. For the global crossbar, the request and reply networks

are separated by two different crossbar switches. For the 2D mesh,

a single network is used for both request and reply communication.

To avoid protocol deadlocks, the network is divided into two virtual

subnetworks for the respective communication, where VCs are

evenly dedicated to each subnetwork [4].

4.2 Multicast in Crossbar

To support multicasting in the crossbar, flit replication capability

is primarily needed. To enable replication with high throughput,

we manifest the matrix-crossbar in the Fermi architecture into a

mux-based crossbar. In earlier multicast studies like VCTM [12],

replication is performed by reading the same flit out of a VC and

sending it to each output port one-by-one upon successful alloca-

tion. This has an advantage of a simple crossbar design but incurs

serialization delay to multicast flits. Hence, we adopt a mux-based

crossbar used by RPM [31] that supports high throughput at the

cost of higher energy consumption.

4.3 Multicast in 2D Mesh

For multicast support in the 2D mesh topology, we adopt a multi-

cast router supporting tree-based routing, similar to VCTM [12],

RPM [31], BAM [21] and Whirl [19]. The routing algorithms in

these routers have been optimized for the traffic patterns in Chip

MultiProcessors where core-to-core communications are frequent.

Jang et al [11] has shown that a Dimension Order Routing (DOR) is

simple but effective in GPGPU due to the traffic patterns occurring

between SMs and MCs only. Therefore, the multicast router in this

paper implements DOR.

 Multicast Replication Unit

VC Allocator

SW Allocator

...

Input 1

Input 5

Output 1

Output 5

...

Input buffers

Input buffers

...

Lookahead
Multicast
RC Unit

Lookahead
Multicast
RC Unit

Figure 4: Multicast Router Architecture

We use a 3-stage lookahead router as the baseline router. A

traditional NoC router has four stages: Routing Computation (RC),

VC Allocation (VA), Switch Allocation (SA) and Switch Traversal

(ST). To reduce the pipeline depth, the 3-stage lookahead router

performs the routing computation for next hop router in the VA

stage [8].

To support multicast routing in the baseline router, we incorpo-

rate a replication unit and lookahead multicast RC units as depicted

in the shaded units in Figure 4. The replication unit copies a mul-

ticast packet at a replication point to different directions to make

sure that the packet arrives at all final destinations. The multicast

RC units decide the output port list to which replicated packets are

directed, based on DOR. For each replica, it also splits a destination

list of an original packet into a subset being routed via the same

output port. Then, VC allocator uses the output port list to get an

available VC from the downstream routers for replica packets. As

a replica gets a free VC, it goes to the SA stage and a packet is

replicated to an output port at the ST stage, storing the destination

list for the replica in replica’s header [31].

We use multiple RC units to support lookahead routing decision

for replicas.When a packet is replicated to multiple directions, we

need to make sure that the lookahead routing decision is performed

for each replicated packet, which causes additional complexity.

For all replicas, each input port is required to have lookahead RC

ICS ’17, June 14-16, 2017, Chicago, IL, USA K. H. Kim et al.

capability for all immediate neighboring routers. Since the multiple

RC units work in parallel, they can be overlapped with the VA stage

without increasing the critical path.

As a replication scheme, we choose an asynchronous replication

scheme [31] where flits targeted for different destinations are for-

warded independently. Then VA, SA and ST are done for each flit

individually. An input VC keeps storing a flit until it copies the flit

to all target output ports [31][21]. Replicating a packet to multiple

output ports may have conflicts with other normal packets already

in the router. Replicated flits are handled like normal flits for the

VA/SA stages without giving priority on the replicated flits. To

enable replication with high throughput, we choose the mux-based

crossbar inside the multicast router discussed in Section 4.2.

5 EVALUATION

5.1 Methodology

To evaluate the proposed packet coalescingwe integrate PCUs into a

cycle-accurate GPGPU simulator, GPGPU-Sim 3.2.2 [4]. We modify

Booksim [14], the NoC simulation component of GPGPU-Sim, to

simulate multicast for crossbar and 2D mesh. To see the impact of

routing to coalescing performance, we use two routing algorithms

for 2D mesh, XY-XY and XY-YX, where both uses XY routing in

the request network, and use XY and YX routing, respectively for

the reply network. The number of RGRs that affect coalescing

performance is set to 128 for each PCU. We use CACTI model

6.5 [23] to measure latency and energy overhead of RGR. Table 1

shows the detailed system parameters we use to model the baseline

GPGPU architecture.

System Parameters Details

Shader Core 56 / 15 Cores, 1.4Ghz

Memory Model 8 / 6 MCs, 924 MHz

Warp Scheduler Greedy-Then-Oldest (GTO)

L1I, L1T, L1C Cache 2KB, 12KB, 8KB

L1D Cache, Shared Memory 16KB, 48KB

L2 Cache 64KB

Min L2, DRAM latency 120, 220 cycles

Topology 8 x 8 Mesh / Crossbar

Virtual Channel 4 VCs per Port (8-Flit Buffer)

Routing DOR / Destination Tag

Flow Control Wormhole, Credit-based

Channel Width 128 Bits / 256 Bits

Table 1: System Configuration Parameters

We select a variety of applications from multiple benchmark

suites: AES, LPS, MUM, NN, NQU, RAY and STO from GPGPU-

Sim [4], BFS, BP, B+tree (BT), Discrete Wavelet Transform (DWT),

Gaussian Elimination (GE), HS, KM, LUD, NW, Path Finder (PF),

SC and SRAD2 from Rodinia [6], CUTCP, HISTO, and SpMV from

Parboil [28], PVC, PVR, SS and WC from Mars [9], and 2DCONV,

2MM and 3DCONV from Polybench [10].2 We choose a mix of

compute bound and memory bound benchmarks so as to show the

prevalence of data redundancy across diverse applications.

Memory coalescing has a significant effect on reducing the num-

ber of memory requests because memory accesses from many

threads are merged into smaller ones. Thus, we evaluate our packet

2We use abbreviations of benchmarks as presented in their literatures

coalescing mechanism in the presence of an intra-warp memory

coalescer [25]. Also, we compare ours against a novel inter-warp

memory coalescer (Warppool) [18] which merges more memory

accesses from different warps on top of the intra-warp memory co-

alescing. As a result, Warppool can be used as an effective means to

mitigate the MC bottlenecks. For fair comparison, we implemented

the FIFO request selection policy both in our mechanism and in

our implementation of Warppool. Note that Warppool also uses

prioritization policy proposed by MRPB [13].

5.2 IPC Improvement Analysis

Figure 5a compares the normalized IPC of all benchmarks when

Warppool is used with routing algorithm XY-YX, and PCUs are

used with XY-XY and XY-YX. Each IPC is normalized over the

baseline using the corresponding routing combination. Since the

request grouping and reply merging in each PCU work together

as a mechanism for packet coalescing, we do not show benefit for

each separately.

We make two major observations in the IPC performance anal-

ysis. First, the proposed coalescing approach is more effective

than Warppool. In XY-YX routing, our approach provides 15% IPC

improvement on average, while Warppool does IPC performance

degradation by 3%. With Warppool, only 8 out of 29 benchmarks

(28%) have more than 5% IPC improvement, while others have per-

formance degradation or minor improvement. Warppool is a novel

idea, but the overhead of merging requests from different warps

causes performance degradation in the benchmarks with limited

inter-warp locality. Especially, since the merging process is on

the critical path of cache accesses, the performance degradation

appears more severe for benchmarks with low L1 data cache miss

rates (e.g. PF and BT).

Second, the proposed coalescing approach becomes more effec-

tive when a better routing algorithm that mitigates reply network

hotspots is used. As XY routing in the reply network causes net-

work hotspots near MCs with bottom MC placement, YX routing

has been shown more effective [11]. Our approach achieves the

highest IPC improvement 15% with XY-YX routing, while it does

12% with XY-XY routing. Such performance gap arises due to worse

coalescing performance in XY-XY routing, which is shown in bench-

marks such as LPS, HS, SpMV, PF and PVC. Reply packets under

XY routing are delivered with delay due to the network hotspots.

After the reply packets are accepted by SMs, next requests with

inter-core locality are sent to MCs with worse temporal locality, so

PCUs are limited in involving more requests in request grouping.

Synergetic Effect of PCU and Warppool. Both PCU and

Warppool synergetically improve the overall IPC performancewhen

they work together, as shown in Figure 6. We simulate both mech-

anisms for benchmarks benefitting from Warppool. Both mecha-

nisms achieve IPC improvement by 41% on average, while PCU and

Warppool do by 22% and 21%, respectively. Such synergetic effect

is due to the difference in the target that each mechanism works

for. Warppool attempts to reduce unnecessary memory requests

caused by inefficient use of an L1 cache (e.g. cache thrashing), but

necessary requests to fill the L1 cache are sent and these still cause

the MC bottlenecks. By reducing traffic volume of the correspond-

ing replies with inter-core locality, the benefit from PCU keeps

valid with Warppool. However, SC is more effective with PCU only.

Packet Coalescing Exploiting Data Redundancy in GPGPU Architectures ICS ’17, June 14-16, 2017, Chicago, IL, USA

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

N
or

m
al

iz
ed

 IP
C

Warppool/XY-YX PCU/XY-XY PCU/XY-YX
1.67 2.12 0.97 1.12 1.15

(a) Normalized IPC

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

In
te

r-c
or

e
Lo

ca
lit

y
(%

)

XY-XY XY-YX 960

(b) Inter-core Locality Ratio

Figure 5: System and Coalescing Performance

When Warppool is used only, the requests are waiting in SMs due

to the backpropagation of MC bottlenecks, so Warppool effectively

works since the latency overhead of merging requests is hidden.

However, as our packet coalescing is introduced, this latency hiding

is less effective since requests do not wait, thereby degrading the

performance.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
al

iz
ed

 IP
C

Warppool/XY-YX PCU/XY-YX Warppool+PCU/XY-YX
2.11

Figure 6: Comparison of Normalized IPCs

5.3 Packet Coalescing Analysis

The IPC performance improvement is mainly attributed to AMAT

reduction by packet coalescing. We first analyze coalescing per-

formance according to routing algorithms, then discuss the MC

bottlenecks alleviated by the coalescing, and finally discuss memory

regions with inter-core locality on two applications.

Coalescing Performance. We measure the coalescing perfor-

mance based on the actual inter-core locality ratio measured by

the percentage of the number of coalesced packets out of the total

number of reply packets. In this analysis, we make two conclusions.

First, the coalescing performance is affected by routing algorithms.

As shown in Figure 5b, the actual inter-core locality ratio is 38.9%

under XY-YX on average, while it is 35% under XY-XY. As discussed

in Section 5.2 and [11], XY-XY routing suffers from more severe

bottleneck than XY-YX in the reply network. It causes reply packets

to be delivered to each SM with more delay between them. Ac-

cordingly, next requests with a potential inter-core locality are sent

from each SM more sparsely. As a consequence, some requests lose

a chance of grouping under XY-XY routing. However, there are

some outliers that have slightly higher inter-core locality under

XY-XY. For instance, SC has 34.5% and 29.4% inter-core locality

ratio in XY-XY and XY-YX, respectively. Coalescing performance

in SC is less sensitive to the temporal locality of accesses due to

its long memory latency caused by high L2 cache miss rate (97%).

The high MC bottleneck favorably gives larger time window for

grouping, so extra requests are additionally grouped to existing

RGRs backed up by a higher average number of coalesced packets

in XY-XY than XY-YX.

Second, PCUs capture most of the requests with inter-core lo-

cality (88.4%) by using memory access time as its time window. To

understand this, we conservatively compare the actual inter-core

locality ratio to the potential ratio of 960-cycle time window in

Figure 2a because the average memory latency is 649 cycles under

XY-YX. The potential inter-core locality ratio is 44.0% on average,

while the actual inter-core locality is 38.9%. By giving extra time

to PCU’s time window, PCUs are able to capture 5% more requests.

However, the extra time becomes as a delay overhead to AMAT

of 38.9% requests. This offsets the benefit of AMAT reduction by

packet coalescing, thereby gaining no performance improvement.

Impact of Coalescing. We summarize two conclusions. First,

our packet coalescing reduces AMAT by 15.5% and saves network

bandwidth by 13%. As the packet coalescing merges multiple pack-

ets into one, the number of packets injected into the reply network

is reduced by 19.7% on average, which alleviates MC stall time

by 24.5% and finally leads to L1 cache miss penalty reduction by

16.3%, as shown in Figure 7. As a consequence, AMATs for L1I, L1C,

L1T and L1D caches are reduced by 16.1%, 15.9%, 3.8% and 26.2%,

respectively on average. The average AMAT reduction of all L1

caches is 15.5%.

Second, SC shows an interesting result where the MC stall time

increases by 88% but L1 cache miss penalty is reduced. The impact

of the increased stall time is minimal. The MC stall time ratio is

1.3% in the baseline as shown in Figure 1b, and increases to just

2.5% when coalescing is used. However, PCUs helps to alleviate bot-

tlenecks caused by long memory latency. While requests accepted

by MC keep waiting for their turn for memory accesses in the

queue from L2 to DRAM, these backpressures back the MC request

queue to be frequently full. MC node in the baseline cannot accept

new requests, leaving them to wait in the request network, which

ICS ’17, June 14-16, 2017, Chicago, IL, USA K. H. Kim et al.

-10.0
0.0

10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

R
ed

uc
tio

n
or

 S
av

in
gs

 (%
)

Injected Packets Reduction MC Stall Time Reduction L1 Cache Miss Penalty Reduction Network BW Savings

Figure 7: Injected Packets, MC Stall Time and L1 Cache Miss Penalty Reduction and Network Bandwidth Savings

makes a bottleneck. However, PCUs continue to accept requests

for grouping, while MC is busy with reading data from DRAM. As

a result, 29.4% requests are grouped and L1 cache miss penalty is

reduced by 49.2%.

Memory Region with Inter-core Locality. Figure 8 depicts

the entire memory region used by two applications, SS and LUD

where the normalized degree of inter-core locality for all cache

blocks is illustrated as a heatmap. To measure the degree, the

number of requests with inter-core locality for each cache block is

counted. Its normalized degree of inter-core locality is calculated as

the count value of each block divided by the maximum count value

among all cache blocks. To locate each cache block on the plot, the

x and y axes indicate the row-wise and column-wise offsets from

the base address of a global memory (i.e. 0x80000000).

Figure 8a shows almost all cache blocks that store an input matrix

have high inter-core locality. It is because LUD kernels have many

dependencies on row-wise and column-wise data [6]. LUD has

three kernels such as lud diagonal, lud perimeter and lud internal.

Among accesses with inter-core locality, 88% and 12% occurs in

lud internal and lud perimeter, respectively. Interestingly, cache

blocks on the top-left region have higher inter-core locality than

others. As LUD diagonally processes a matrix from top-left to

bottom-right direction over multiple iterations, a range of data that

a kernel needs to compute shrinks and thus the number of running

SMs gets decreasing. Thus, the data on left side is accessed by more

SMs, thus showing a higher degree of inter-core locality.

0 1 2 3 4 5 6 7 8 9 A B C D E F

19000

32000

4B000

64000

7D000

96000

AF000

C8000

E1000

FA000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

(a) LUD
0 1 2 3 4 5 6 7 8 9 A B C D E F

FA000

1F4000

2EE000

3E8000

4E2000

5DC000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) SS

Figure 8: Memory Region with Inter-core Locality

SS usually has inter-core locality in two memory regions asso-

ciated with Map and Group stage, respectively in the MapReduce

framework as shown in Figure 8b. In the framework for SS, Map

stage computes similarity scores for all pair-wise documents by

using their feature vectors, while Group stage sorts the pair-wise

similarity scores. As such pair-wise computation is performed

through multiple thread blocks for large input data, Map stage

running across multiple SMs needs to access feature vectors of

redundant documents, which appears on the top in Figure 8b. 71%

of inter-core locality occurs in this stage. Similarly, Group stage

also needs to perform a pair-wise comparison between two scores

to sort a series of similarity scores. 29% inter-core locality is related

to Group stage, which is shown in the middle of Figure 8b. As

Group stage is necessary for MapReduce-based applications, PVC,

PVR and WC also have inter-core locality in this stage. While the

sorting process in the stage requires frequent data movement [9],

our coalescing unit effectively eliminates the bottlenecks caused by

the data movement.

5.4 Sensitivity Analysis

Impact of RGR Size. We evaluate IPC performance and coalescing

performance across all benchmarks as varying the number of RGRs:

64, 128, 256, 512 and 1204. Our coalescing technique achieves 39.4%

inter-core locality ratio on average and 19% IPC improvement with

1024 RGRs across all benchmarks. Most benchmarks achieve satu-

rated IPC performance at 128 RGRs except four benchmarks shown

in Figure 9. While three benchmarks such as SC, SpMV and SS gain

saturated performance at 256 RGRs, MUM obtains a monotonically

increasing IPC improvements until 1024 RGRs are used. As the

number of RGRs grows from 128 to 1024 in MUM, the inter-core

locality ratio increases from 4% to 16% as shown in Figure 9, and

the IPC improvement does from 15% to 88%. This happens because

MUM has higher memory intensity than others [6].

Impact of L2 Hit Latency. To exploit a long hit latency of

L2 cache for request grouping, we place PCUs before L2 cache as

discussed in Section 3.2. We study the impact of a shorter L2 hit

latency on coalescing performance. We model the L2 cache hit

latency as 2 cycles based on CACTI model [23]. Figure 10 shows

the normalized IPCs when the minimum L2 hit latency is set to 120

and 2 cycles, respectively. The IPC values of two configurations are

normalized against the baseline with corresponding L2 latency. It

also plots inter-core locality ratio as a line for each latency case. The

IPC improvement increases up to 24% on average at 2-cycle hit la-

tency, while it is 15% at 120-cycle hit latency. However, the average

inter-core locality ratios do not show noticeable differences, which

are 39% and 37% in the 120-cycle and 2-cycle latencies, respectively.

As the cache access time is reduced in the 2-cycle case, the injection

rate of reply packets becomes higher, which causes more severe

MC stalls. Our coalescing becomes relatively more effective as a

bottleneck alleviator in the 2-cycle case, resulting in higher IPC

improvement.

Impact of MC placement. We compare four configurations

such as bottom, top-bottom, edge and diamond MC placements

studied in the previous literature [11]. The IPC values of all differ-

ent configurations are normalized against the baseline with cor-

responding MC placements and XY-YX routing. Our coalescing

technique achieves similar average IPC improvements, 15%, 15%,

14% in bottom, top-bottom and edge MC placements, while it does

Packet Coalescing Exploiting Data Redundancy in GPGPU Architectures ICS ’17, June 14-16, 2017, Chicago, IL, USA

lower improvement, 11% in diamond (unplotted). The diamond

MC placement is commonly known as the optimal placement [1],

but it is not when multicast is used. When MC nodes serve as a

replication point of multicast packets, it causes contention between

replicated packets and injected packets. As a result, it offsets the

benefit of the MC bottlenecks lessened by our coalescing technique.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0

0.5

1

1.5

2

2.5

3

MUM SC SpMV SS

In
te

r-c
or

e
Lo

ca
lit

y
R

at
io

 (%
)

N
or

m
al

iz
ed

 IP
C

64 128 256 512 1024

Figure 9: Normalized IPC (Bar) and Inter-core Locality Ratio

(Line) as varying the number of RGRs

5.5 Coalescing in the Global Crossbar

We choose 17 benchmarks with MC bottlenecks under the crossbar

such as MUM, KM, 2MM, SC, 3DCONV, 2DCONV, LPS, WC, SpMV,

SS, BT, HISTO, SRAD2, GE, BFS, PVC and PVR. Our coalescing

technique achieves 30.3% of inter-core locality ratio and yields

7% IPC improvement on average (unplotted). On the other hand,

Warppool obtains 28% performance degradation on average and

only shows IPC improvement for a few benchmarks such as KM,

SC, SS and PVC by 21%, 6%, 10% and 23%, respectively.

5.6 Hardware Cost

Coalescing Overhead. We analyze the area overhead incurred by

the proposed PCUs. Since a PCU uses 128 RGRs and PCU pointers

which take 14B and 7 bits, respectively, a PCU per MC incurs the

total overhead 1904B. As shown in Table 1, an SM has 86KB L1

caches and an MC has 64KB L2 cache. Compared to the total cache

infrastructure of 56 SMs and 8 MCs, the total overhead incurred is

just 0.28%. The overheads of RGR are summarized in Table 2.

Size Access Time (ns) Energy (J) Leakage Pwr (W)

64 0.19 3.66E-12 2.92E-04

128 0.20 6.50E-12 5.37E-04

256 0.21 1.41E-11 1.07E-03

512 0.22 2.56E-11 2.14E-03

1024 0.26 4.16E-11 4.18E-03

Table 2: RGR Overhead

Multicast Overhead. The hardware overhead of a DOR-based

multicast router has two parts. First, multiple RC units incurs an

overhead to support lookahead routing. 3 ∼ 4 RC units per each

input port are added to the baseline router. A multicast RC unit

needs at most 59 OR gates for 64 destination nodes, so a router needs

944 OR gates which accumulate to the total area overhead of 0.40%

per router based onDSENT [29]. Second, we adopted themux-based

crossbar that has been used by several multicast routers such as

RPM [31] and BAM [21], to avoid serialization delay of replication

in the matrix-crossbar. The mux-based crossbar has been analyzed

to consume more energy than the matrix-crossbar [19]. However,

our mechanism can be built on energy-efficient crossbar, mXbar

that supports single-cycle replication with small energy overhead or

even better energy efficiency compared to the matrix-crossbar [19].

6 RELATEDWORK

Network Design in GPU. Bakhoda et al. [3] proposed a cost-

efficient checkerboard router design with multi-ported routers for

MCs to increase MC network injection bandwidth, for many read

replies. Jang et al. [11] introduced a bandwidth efficient network

design for GPU traffic through VC monopolization and partitioning.

Ziabari et al. [32] explored asymmetric NoC designs where the reply

subnetwork is provided with larger channel width. However, ours

differs because we directly reduce the heavy reply traffic exploit-

ing data redundancy. Hsu et al. [7] proposed a packet coalescing

mechanism, but this study is applied to request network to rear-

range memory requests for enhancing row buffer hits in DRAM. It

improves DRAM bandwidth but does not reduce traffic volume in

reply network as our coalescing approach.

Reducing Global Memory Access Demand in GPU. To alle-

viate high demand on global memory system, an intra-warp mem-

ory coalescer [25] and an inter-warp memory coalescer (Warp-

pool) [18] were proposed, which has been compared to our tech-

nique. Jia et al. [13] proposedmemory request prioritizationmethod

for effective caching, but it is limited to cache-sensitive applications.

Dongdong et al proposed a DRAM scheduler exploiting inter-core

locality to reduce memory access latency [20], which is orthogonal

to our packet coalescing technique.

Compression in GPU Interconnect/Memory. Data compres-

sion has been studied in GPGPUs. Pekhimenko et al addressed a

problem of increased dynamic energy caused by frequent commu-

nication switching of compressed data traffic [26]. To alleviate the

off-chip memory bandwidth bottleneck, Sathish et al applied both

lossless compression and lossy compression [27]. The data com-

pression is complementary to our coalescing technique because

ours reduce the number of packets, while compression mechanism

reduces the size of each packet.

Warp Schedulers in GPU. GPGPU performance has been im-

proved by novel warp scheduling policies. Narasiman et al proposed

two-level scheduling that increases core utilization [24], and Jog

et al proposed OWL scheduler that improves both L1 hit rate and

DRAM bandwidth utilization [15]. As a homogeneous scheduling

policy works across SMs, the inter-core locality patterns are main-

tained, so that the novel schedulers with our packet coalescing can

synergetically improve performance.

7 CONCLUSIONS

In this paper, we identify that the performance of GPGPU applica-

tions is significantly impacted by MC bottlenecks near the MCs. To

address this issue, we propose to reduce the traffic volume in the

reply network from MCs to SMs by introducing PCUs in MCs. The

key idea is to coalesce read reply packets in MCs when they deliver

the same cache block to multiple SMs. To ensure that the coalesced

packets arrive at the respective requesting SMs, we support multi-

cast for the interconnection network. To the best of our knowledge,

this is the first work showing a good use of multicast in GPGPUs.

Our extensive evaluations across a wide range of benchmarks show

that PCUs coupled with XY-YX routing obtain 15.5% AMAT reduc-

tion (up to 65.2%) and 13% network bandwidth savings (up to 67.8%)

in a large-scale GPGPU with 2D mesh, and thus improve overall

IPC by 15% (up to 112%) on average. Also, our coalescing approach

achieves 7% IPC improvement in a GPGPU with the crossbar.

ICS ’17, June 14-16, 2017, Chicago, IL, USA K. H. Kim et al.

0
10
20
30
40
50
60
70
80
90
100

0.00

0.50

1.00

1.50

2.00

2.50

In
te

r-c
or

e
Lo

ca
lit

y
R

at
io

 (%
)

N
or

m
al

iz
ed

 IP
C

120 2

Figure 10: Normalized IPC (Bar) and Inter-core Locality Ratio (Line) when a minimum L2 hit latency is 120 and 2 cycles

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers and Dr.

Mutlu for their valuable comments and helpful suggestions. This

work is supported by NSF award CCF-1423433.

REFERENCES
[1] Dennis Abts, Natalie Enright, Jerger John Kim, Dan Gibson, and Mikko Lipasti.

2009. Achieving predictable performance through better memory controller
placement in many-core cmps. In Proceedings of the 36th Annual International
Symposium on Computer architecture (ISCA-36).

[2] Rachata Ausavarungnirun, Kevin Kai-Wei Chang, Lavanya Subramanian,
Gabriel H. Loh, and Onur Mutlu. 2012. Staged Memory Scheduling: Achieving
High Performance and Scalability in Heterogeneous Systems. In Proceedings of
the 39th Annual International Symposium on Computer Architecture (ISCA-39).
416–427.

[3] Ali Bakhoda, John Kim, and Tor M. Aamodt. 2010. Throughput-Effective On-
Chip Networks for Manycore Accelerators. In Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-43). 421–432.

[4] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H.Wong, and T.M. Aamodt. 2009. Analyzing
CUDA workloads using a detailed GPU simulator. In Proceedings of International
Symposium on Performance Analysis of Systems and Software (ISPASS 2009). 163–
174.

[5] James Balfour and William J. Dally. 2006. Design Tradeoffs for Tiled CMP On-
chip Networks. In Proceedings of the 20th Annual International Conference on
Supercomputing (ICS 2006). 187–198.

[6] Shuai Che, J.W. Sheaffer, M. Boyer, L.G. Szafaryn, Liang Wang, and K. Skadron.
2010. A characterization of the Rodinia benchmark suite with comparison to
contemporary CMP workloads. In Proceedings of International Symposium on
Workload Characterization (IISWC 2010). 1–11.

[7] Chien-Ting Chen, YoshiShih-Chieh Huang, Yuan-Ying Chang, Chiao-Yun Tu,
Chung-Ta King, Tai-Yuan Wang, Janche Sang, and Ming-Hua Li. 2014. Designing
Coalescing Network-on-Chip for Efficient Memory Accesses of GPGPUs. In
Network and Parallel Computing. 169–180.

[8] William Dally and Brian Towles. 2003. Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[9] W. Fang, B. He, Q. Luo, and N. K. Govindaraju. 2011. Mars: Accelerating MapRe-
duce with Graphics Processors. IEEE Transactions on Parallel and Distributed
Systems 22, 4 (2011), 608–620.

[10] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. 2012.
Auto-tuning a high-level language targeted to GPU codes. In Innovative Parallel
Computing (InPar), 2012. 1–10.

[11] Hyunjun Jang, Jinchun Kim, P. Gratz, Ki Hwan Yum, and Eun Jung Kim. 2015.
Bandwidth-efficient on-chip interconnect designs for GPGPUs. In Proceedings of
the 52nd Anual ACM/EDAC/IEEE Design Automation Conference (DAC 2015). 1–6.

[12] Natalie Enright Jerger, Li-Shiuan Peh, and Mikko Lipasti. 2008. Virtual circuit
tree multicasting: A case for on-chip hardware multicast support. In Proceedings
of THE 35th Anual International Symposium on Computer Architecture (ISCA-35).
229–240.

[13] Wenhao Jia, K.A. Shaw, and M. Martonosi. 2014. MRPB: Memory request pri-
oritization for massively parallel processors. In Proceedings of the 20th Anual
International Symposium on High Performance Computer Architecture (HPCA-20).
272–283.

[14] Nan Jiang, D.U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D.E. Shaw, J.
Kim, andW.J. Dally. 2013. A detailed and flexible cycle-accurate Network-on-Chip
simulator. In Proceedings of 2013 IEEE Inernational Symposium on Performance
Analysis of Systems and Software (ISPASS 2013). 86–96.

[15] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R. Das.
2013. OWL: Cooperative Thread Array Aware Scheduling Techniques for Im-
proving GPGPU Performance. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). 395–406.

[16] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu,
Ravishankar Iyer, and Chita R. Das. 2013. Orchestrated Scheduling and Prefetch-
ing for GPGPUs. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA-40). 332–343.

[17] S.W. Keckler, W.J. Dally, B. Khailany, M. Garland, and D. Glasco. 2011. GPUs and
the Future of Parallel Computing. Micro, IEEE 31, 5 (2011), 7–17.

[18] John Kloosterman, Jonathan Beaumont, Mick Wollman, Ankit Sethia, Ron Dres-
linski, Trevor Mudge, and Scott Mahlke. 2015. WarpPool: Sharing Requests
with Inter-warp Coalescing for Throughput Processors. In Proceedings of the 48th
International Symposium on Microarchitecture (MICRO-48). 433–444.

[19] Tushar Krishna, Li-Shiuan Peh, Bradford M. Beckmann, and Steven K. Reinhardt.
2011. Towards the Ideal On-chip Fabric for 1-to-many and Many-to-1 Communi-
cation. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-44). 71–82.

[20] D. Li and T. M. Aamodt. 2016. Inter-Core Locality Aware Memory Scheduling.
IEEE Computer Architecture Letters 15, 1 (2016), 25–28.

[21] Sheng Ma, N.E. Jerger, and Zhiying Wang. 2012. Supporting efficient collective
communication in NoCs. In Proceedings of the 18th IEEE International Symposium
on High Performance Computer Architecture (HPCA-18). 1–12.

[22] Jiayuan Meng and Kevin Skadron. 2009. Performance Modeling and Automatic
Ghost Zone Optimization for Iterative Stencil Loops on GPUs. In Proceedings of
the 23rd International Conference on Supercomputing (ICS ’09). 256–265.

[23] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Op-
timizing NUCA Organizations and Wiring Alternatives for Large Caches with
CACTI 6.0. In Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-40). 3–14.

[24] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt.
2011. Improving GPU performance via large warps and two-level warp schedul-
ing. In 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 308–317.

[25] NVIDIA. 2009. Fermi: NVIDIA’s Next Generation CUDA Compute Architecture.
(2009).

[26] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W.
Keckler. 2016. A case for toggle-aware compression for GPU systems. In 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
188–200.

[27] Vijay Sathish, Michael J. Schulte, and Nam Sung Kim. 2012. Lossless and Lossy
Memory I/O Link Compression for Improving Performance of GPGPUWorkloads.
In Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques (PACT ’12). 325–334.

[28] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, vLi Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. 2012. Parboil: A Revised
Benchmark Suite for Scientific and Commercial Throughput Computing. Technical
Report IMPACT-12-01. University of Illinois at Urbana-Champaign, East Lansing,
Michigan.

[29] Chen Sun, C.-H.O. Chen, G. Kurian, Lan Wei, J. Miller, A. Agarwal, Li-Shiuan
Peh, and V. Stojanovic. 2012. DSENT - A Tool Connecting Emerging Photonics
with Electronics for Opto-Electronic Networks-on-Chip Modeling. In Proceedings
of the 6th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2012).
201–210.

[30] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, C.
Das, M. Kandemir, T.C. Mowry, and O. Mutlu. 2015. A case for Core-Assisted
Bottleneck Acceleration in GPUs: Enabling flexible data compression with assist
warps. In Proceedings of the 42nd ACM/IEEE Anual International Symposium on
Computer Architecture (ISCA-42). 41–53.

[31] Lei Wang, Yuho Jin, Hyungjun Kim, and Eun Jung Kim. 2009. Recursive par-
titioning multicast: A bandwidth-efficient routing for Networks-on-Chip. In
Proceedings of the 3rd ACM/IEEE International Symposium on Networks-on-Chip
(NoCS 2009). 64–73.

[32] Amir Kavyan Ziabari, José L. Abellán, Yenai Ma, Ajay Joshi, and David Kaeli.
2015. Asymmetric NoC Architectures for GPU Systems. In Proceedings of the
9th Anual International Symposium on Networks-on-Chip (NOCS 2015). Article 25,
25:1–25:8 pages.

