
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Push Multicast: A Speculative and Coherent
Interconnect for Mitigating Manycore CPU

Communication Bottleneck
Jiayi Huang†, Yanhua Chen†, Zhe Wang‡, Christopher J. Hughes‡, Yufei Ding∗, Yuan Xie§

†HKUST(GZ), ‡Intel Labs, ∗UC San Diego, §HKUST
Emails: hjy@hkust-gz.edu.cn, ychen484@connect.hkust-gz.edu.cn

{zhe2.wang,christopher.j.hughes}@intel.com, yufeiding@ucsd.edu, yuanxie@ust.hk

Abstract—As CPUs scale up to many cores, the bandwidth
of the network-on-chip (NoC) and cache can soon become
the performance bottleneck. In modern processors, the cache
hierarchy plays a reactive role to supply data upon request. In
parallel programs, shared data accesses from different cores at
different times can consume large cache and NoC bandwidth
for the same data. These same-data accesses inherently have
redundancy and lead to inefficient cache and NoC bandwidth
utilization.

In this work, we propose Push Multicast, a speculative and
coherent interconnect. We transform the last-level cache into a
proactive agent to push data to other sharers upon replying to
the demand requester. Pushing enables effective multicasting to
reduce LLC and NoC bandwidth consumption. A coherent in-
network filter is proposed to prune the outstanding requests
in the routers along the way of the pushed data delivery.
Moreover, a dynamic mechanism is designed to pause and resume
pushing adaptively. Compared with a system with an L1 Bingo
data prefetcher and an L2 Stride prefetcher, Push Multicast
achieves an average of 33% NoC bandwidth saving, a geomean
of 1.02× and a maximum of 1.56× speedup in a 16-core system.
In a 64-core system, it further achieves an average of 43%
NoC bandwidth saving, along with a geomean of 1.11× and a
maximum of 2.08× speedup.

I. INTRODUCTION

The insatiable need for compute in datacenters continues
to drive CPU core counts upward. For example, Intel’s Sierra
Forest with 144 cores was recently announced [32], as was
AMD’s Bergamo with 128 cores [1]. The large set of cores
is connected through scalable network-on-chip (NoC) fabrics.
While manycore server CPUs are typically optimized for
multi-programmed scenarios, most support cache coherent
shared memory, and their NoCs also cater to multi-threaded
workloads. For CPUs with shared, sliced caches, such as
a globally shared last-level cache (LLC), as the number of
cores grows, the pressure on the LLC and NoC grows. The
bandwidth of both the LLC and the NoC can become a
performance bottleneck. Furthermore, aggressive SIMD opti-
mizations such as advanced vector and matrix extensions (e.g.,
Intel AVX512/AMX [30]) accelerate computation, which may
lead to more frequent data accesses to worsen the problem.

In modern processors, the cache hierarchy plays a reactive
role in supplying data: caches return data after receiving a
request. In multi-threaded workloads on a manycore CPU with
a shared LLC, shared data reads happen when different private

caches send read requests to the LLC for the same line. The
LLC controller subsequently processes each individual request
and replies with identical data responses separately. These
same-data accesses and deliveries contain high redundancy in
both request and data response traffic. They not only consume
request processing and response injection bandwidth of the
LLC controller, but also lead to inefficient NoC utilization.

In this work, we focus on multi-threaded workloads with a
considerable portion of read-shared data. We aim to mitigate
the bandwidth bottleneck of read-shared data accesses caused
by capacity misses in private caches. When the working set is
too large to fit in a core’s private cache, shared data that has
been previously read is evicted before the next use. This forces
each core to send a request to the LLC for each shared data
read, pressing heavily on the NoC and LLC. An effective way
to tackle this problem is multicasting. Prior work on multicasts
can be mainly classified into two categories: request coalescing
for multicasts and software-assisted multicasts.

Request coalescing proposals include request combining in
the NYU Ultracomputer [24] and GPU packet coalescing [38].
The NYU Ultracomputer combines later requests with an
earlier registered one in network switches and uses a response
to serve all the registered requests. Similarly, GPU packet
coalescing combines requests at the shared LLC and replies to
them using a multicast with a single cache access. However,
they are not hardware coherent and cannot be applied to many-
core CPUs. Additionally, they are designed for communication
between distinct compute and memory nodes and have lim-
ited support for the all-to-all communication pattern resulting
from the sophisticated cache coherence and compute-LLC co-
location in manycore CPUs. Moreover, threads running on
different cores usually have great variations of execution speed
in a mesh-based non-uniform cache architecture. Due to this,
request coalescing at the LLC or routers can rarely happen,
and so few multicasts can be initiated to save bandwidth.

More recently, Wang et al. propose to have software rep-
resent memory access patterns as streams of accesses and
offload each stream to the cache subsystem [58]. These streams
can then proactively send data to cores and form a limited
degree of multicast opportunistically. This is a general and
viable technique, however, it is highly intrusive. It requires
changes in most components of the system, including software,

Author’s version. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. DOI: 10.1109/HPCA61900.2025.00115

instruction set, core pipeline, load-store unit, cache hierarchy,
and NoC. To avoid the complexity of software and system
changes, in this work, we aim to design a lower-cost hardware-
based solution for the LLC and NoC bandwidth problem.

What fundamentally limits opportunities for multicasts is
the cache has no advance information of when and what
shared data the cores need. If the cache can infer future
read-shared data demands, it can enable effective multicasting.
Previous work has explored coherence prediction to speculate
on data sharers to reduce remote access latency, but has no
support for multicasts to save bandwidth [36], [37], [41],
[48]. They target producer-consumer and migratory sharing
patterns caused by coherence misses and do not apply well
to repeated read-shared accesses caused by capacity misses
on large working sets of emerging workloads. Moreover,
blindly applying multicasts to shared reads can overwhelm
the network as concurrent same-line accesses from different
cores can trigger massive redundant multicast traffic. Further,
these prior techniques incur high hardware overhead with a
dedicated predictor for each line.

In this work, we propose a hardware-based solution, Push
Multicast, which is a proactive and coherent interconnect to
mitigate the manycore bandwidth bottleneck through spec-
ulative multicasts. Specifically, we transform the LLC into
a proactive agent to detect a shared data read from one
core and speculatively push data to other sharers through
a multicast to save LLC and NoC bandwidth. In addition,
the router is augmented with a coherent filter to prune later-
arriving requests to avoid explosive redundant multicasts; the
pushed data carries the sharer information and acts as a shared
cache line delegate floating in the network along the path of
packet delivery. Moreover, the speculative push mechanism
supplies data to the slowest sharers even before they request
it, providing further bandwidth reduction and performance
boost. Push Multicast also includes a dynamic feedback-based
per-core push pausing and periodic resuming mechanism for
adaptive multicasting. In our evaluation using Rodinia [14],
OpenMP kernels [29], and PARSEC [9], results show that
Push Multicast achieves a geomean of 1.02× speedup (up to
1.56×) with 33% NoC bandwidth savings on average in a 16-
core system and a geomean of 1.11× speedup (up to 2.08×)
in a 64-core system when compared to a system with an L1
data Bingo prefetcher [4] and an L2 Stride prefetcher.

In summary, the contributions of this paper are as follows.

• Detailed workload analyses reveal read-shared data ac-
cess patterns in multi-threaded programs: large working
sets lead to high private cache misses and the temporal
sharer access locality reveals opportunities for shared data
pushing and multicasting.

• Conceptualizing the push multicast principle with a
speculative and coherent interconnect microarchitecture
solution to demonstrate its potential for proactive cache
design to enable effective read-shared data multicasting.

• A coherent in-network filter with a pushed data packet
as a representative of a shared cache line to prune

Req

Req

Resp

Req

Resp (on the way)

Resp
Req

Timestamp 1 Timestamp 2 Timestamp 3

Req

Request (Req) Response (Resp)
Read Data
Requester Home Node

Fig. 1: Read-shared data accesses in a reactive conventional
manycore CPU, where each core requests the same line and
gets the response independently.

outstanding sharer requests along the way of pushed data
delivery for traffic reduction.

• A dynamic feedback-based per-core push pausing tech-
nique and a periodic resuming mechanism for adaptive
push multicasts.

II. BACKGROUND AND MOTIVATION

A. Manycore Architecture

A tiled manycore CPU comprises a grid of tiles connected to
a network-on-chip (NoC) to facilitate communication between
tiles. In general, its cache hierarchy employs several levels
to store data on-chip and exploit data locality. Typically, in
addition to a processor core, each tile also hosts private caches,
such as L1 and L2 caches, and a slice of a shared last-level
cache (LLC). In this work, we assume the LLC is shared by
all cores. It is partitioned into slices and distributed across all
the tiles; a given physical address maps to a single “home”
slice according to an address hashing function.

These components are interconnected via a NoC. A request
or data packet consists of one or more flow control units
(flits), with the first and last flits designated as the head
and tail flits, respectively. The head flit typically contains the
accessed address and source/destination IDs. A read request is
represented as a single-flit packet. One common flow control
technique is virtual cut-through, which allows flits of the same
packet to begin transmitting to the next hop without waiting for
the remaining flits. Packets can be injected from an endpoint
into the NoC or ejected from the NoC back to an endpoint,
referred to as injection and ejection, respectively.

In modern manycore processors, read-shared data is typi-
cally served from the LLC. Fig. 1 shows an example where
there are four read requests to a piece of shared data from
different cores (1 , 2 , 3 , and 4) at different times and
the LLC slice replies to them one by one. Despite the cores
wanting the same line, the number of responses is identical
to the number of requests. Such shared data accesses have
redundancy in both request and data response traffic and cause
inefficiency in LLC and NoC bandwidth utilization, which can
become a performance bottleneck.

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

blacksc
holes

bodytrack

flui
danim

ate

freqmine

swaptions
0

100

Pr
iv

at
e

L2
 C

ac
he

 M
iss

es
 P

er
 K

ilo
 In

st
s

 Low traffic load &
 Low L2 MPKI in PARSEC

L2 MPKI Injection Load

0

5

In
je

ct
io

n
Ra

te
(f

lit
s/

cy
cl

e)

Fig. 2: Private L2 cache MPKI (bar, primary Y axis) and NoC
injection load (dot, secondary Y axis).

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

blacksc
holes

bodytrack

flui
danim

ate

freqmine

swaptions
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
ra

ff
ic

 B
re

ak
do

w
n Read-shared Data Read Request Exclusive Data WriteBack Data Others

Fig. 3: Traffic breakdowns and shared data portion varies from
10% to 80%.

B. Motivation

We simulate multi-threaded workloads on a manycore CPU
for cache traffic profiling to study the optimization oppor-
tunities for shared data accesses. The system configuration,
simulation methodology, and workloads are described in §IV.

Large working sets can cause high private L2 cache
misses and high network load. We measure the L2 misses per
kilo-instruction (MPKI) for the benchmarks with large inputs,
which lead to large working sets to stress the cache hierarchy
and NoC. As shown in Fig. 2, the private L2 MPKI is more
than 100 for some workloads. This leads to a large number
of accesses to the shared LLC and thereby, a large volume of
traffic in the NoC with moderate to high network load, except
for the PARSEC benchmarks [9] with low traffic load.

Considerable portions of the LLC access traffic are
read-shared data requests and responses. Similar to prior
work [6], we further profile and classify the NoC traffic
triggered by LLC accesses to understand which category plays
a major role in the bottleneck. Fig. 3 shows the percentiles
of the five traffic categories, including read-shared data, read
request, exclusive data, write-back data, and others. Read-
shared data packets are those generated from read requests to
lines in the shared coherence state. Read-shared data is from
10%–80% of the traffic, and the corresponding requests are
also significant in all cases, showing the criticality of read-
shared data accesses on bandwidth consumption.

Read-shared data accesses from sharers to the LLC
exhibit temporal locality. We simulate an OpenMP version
of matrix-vector multiply (mv), a fundamental kernel in many
deep learning [14] and HPC [35] workloads, and characterize
its shared data access behavior. In this parallel kernel, each
core reads the shared input vector and a private partition
of the matrix; cores synchronize at the end of the parallel
computation. Fig. 4 profiles the shared input vector access
across all the cores. The violin plots show the distribution

Consecutive Access Pair

0

1000

2000

3000

4000

A
cc

es
s

In
te

rv
al

 (C
yc

le
)

0-1
1-2

2-3
3-4

4-5
5-6

6-7
7-8

8-9
9-10

10-11
11-12

12-13
13-14

14-15

Fig. 4: Time interval distribution between consecutive shared
data accesses, where 0-1 means time interval between accesses
from sharers 0 and 1.

Req

Req

Resp

Push

Push

Push

Req

Filtered

Push

Timestamp 1 Timestamp 2 Timestamp 3

Req

Req Resp/PushData Sharer Home Node Filter

Fig. 5: Shared data accesses in the proposed proactive and co-
herent Push Multicast manycore architecture, where a demand
request can trigger a multicast to speculatively push data to
other sharers.

of time intervals between consecutive accesses from different
cores to the shared lines. It reveals the time difference between
consecutive accesses to the same data typically spans one
thousand cycles, and the cumulative time interval from the first
to the last access among all sharers can extend over several
thousand cycles. This is due to thread variation caused by out-
of-order execution and NUCA effect. This implies the time gap
between two consecutive same-line requests is much larger
than LLC lookup time. Thus, packet coalescing at the LLC to
initiate multicasts would be ineffective.

This characterization shows the importance of read-shared
data to the LLC and NoC and calls for optimizations specifi-
cally for this class of data. The observations of temporal local-
ity across sharers motivate Push Multicast to reduce both LLC
and NoC traffic. In particular, we see the potential of shared
data multicasting to not only the core that requests it but also
other sharers. Moreover, the time spread of requests inspires
the push multicast concept of speculatively multicasting shared
data to cores prior to their requests.

III. THE PUSH MULTICAST APPROACH

A. Overview

Push Multicast is a proactive and coherent interconnect
to address the LLC and NoC bandwidth bottleneck caused
by read-shared data accesses. Fig. 5 presents an example
to demonstrate the key concepts in Push Multicast and its
potential. At timestamp 1, three read-shared requests are
triggered by three sharers due to private L2 misses for the
same line to the home node (aka LLC slice), and the first
request (1) arrives earliest. At timestamp 2, when the home

node processes the first request, it generates a push multicast
packet to reply to the demand requester (1); this packet also
pushes data to other sharers (2 , 3 , and 4 in this example).
The pushed data acts as a representative of the shared cache
line along its way to the sharers. In this role, it can filter other
outstanding read requests to the same line from its destined
sharers. For instance, requests from 2 and 3 get filtered
in a router when they meet the pushed data, and the push
becomes a demand response for the pruned requests. Finally,
at timestamp 3, the pushed data arrives at sharer 4 before the
core even requests the data. This turns what would be a miss
into a hit, in contrast to the case in timestamp 3 in Fig. 1.

B. Cache Push Mechanism

Push Triggering Mechanism in LLC. The LLC needs to
determine when to initiate a push and to whom. We separate the
push mechanism into two phases: sharer establishing phase
and push activated phase, where the sharer establishing phase
prepares the sharer information for the push activated phase. In
the sharer establishing phase, the set of sharers for a cache line
has not reached steady state, i.e., the cache line is accumulating
sharers. In the push activated phase, the program has reached
a steady state for this line and triggers re-references due to
private cache misses. Then, the LLC triggers pushes to the
sharers, speculating on their future use of the line.

Specifically, the LLC checks if the read request is from a
new sharer. If so, it replies with a unicast message and adds
the requester ID to the sharer list. Otherwise, it initiates a push
transaction to all sharers rather than a unicast response only
to the demand requester. This inference method is simple as
it is intended to target parallel workloads where threads per-
form similar tasks. This design introduces negligible hardware
overhead as it leverages the existing directory (or snoop filter),
which is used to keep track of the sharers of a cache line for
coherence maintenance1.

Push Handling Procedure in Private Caches. Conven-
tionally, private caches initiate requests to the LLC, and
expect a response to finish the transaction. This guarantees
the processing and consumption of each response and no
blocking happens. In Push Multicast, the LLC can also be
an initiator that speculatively pushes a shared line to private
caches that do not request it. A private cache should properly
handle a push to ensure it does not block other incoming
responses indefinitely and cause a deadlock. For example, it
can happen that unexpected pushed data cannot be accepted
into the cache because all the lines in the matched set are
in blocking transient states and waiting for acknowledgments
(Acks). If the pushed data blocks these Acks, a deadlock
happens.

This can be resolved by separating the push and response
packets into different virtual networks. This requires extra
buffers in all the cache controllers and network routers, costing
a large area overhead. In this work, we use data response

1The current design applies to coherence protocols with silent eviction from
Shared state, which is the only state in which we trigger pushes. Extension
for protocols with non-silent eviction is discussed in §VI.

0 2 3

4 7

8 10 11

12 13 14 15

Addr:0xbeef

Req Push
Push Multicast
Destinations

Home
Node

Addr:0xbeef|Dest:0,2,4,7|Data

Future path

Router Lookup
hit & filtered
2

Dest IDsAddr
40xbeef

Dest IDsAddr

Dest IDsAddr
0,20xbeef

Dest IDsAddr
70xbeef

Addr:0xbeef|Dest:0,2,4,7|Data

Register1

Router

Dest IDsAddr
40xbeef

Dest IDsAddr

Dest IDsAddr
0,20xbeef

Dest IDsAddr
70xbeef

Addr:0xbeef|Dest:0,2,4,7|Data

De-register
3

Addr:0xbeef|Dest:0,2|Data

Dest IDsAddr In-network
Filter

Addr:0xbeef

Fig. 6: An in-network filtering example where the push mul-
ticast packet destined for tiles 0,2,4,7 meets the read request
from tile 7 in the router.

virtual channels for pushes and employ a simple dropping
technique to avoid deadlocks. If a pushed line attempts to evict
a blocked line, the pushed line is dropped to avoid possible
deadlocks. Otherwise, it is accepted into the cache.

Note that no livelock can happen. A response, including a
push triggered by a request from the local or a peer cache, is
guaranteed to be accepted for an outstanding miss to the same
line. This is typical in cache designs to avoid deadlock and
livelock.

C. Coherent In-Network Filter

We propose a coherent in-network filtering mechanism in
the routers to filter read requests that have their responses
embedded in an outstanding push transaction, which acts as a
representative of the shared line. When a push is on the way
to its sharers’ destination tiles in the network, these sharers
could still trigger read requests to the same line prior to
receiving the push. These requests are redundant and can cause
unnecessary response traffic if they get served by the LLC. So,
it’s important to prune them away to save bandwidth.

The mechanism comprises three stages: filter registration,
read request filtering, and filter de-registration. Fig. 6 shows an
example to demonstrate the procedure of in-network filtering.
In the example, a push transaction (with address 0xbeef and
destination bit vector for tiles {0,2,4,7}) is triggered by the
LLC. Meanwhile, a read request is initiated from tile 7 to the
same cache line as the push. The request and the push meet
each other in tile 5’s router and the filtering procedure happens
as follows:

1 Filter Registration. At timestamp 1, the push arrives at
the router input port and its output ports are computed
based on the routing algorithm and the destinations. Then,
the address and the destinations associated with an output
port are registered in the output ports’ filters.

2 Read Request Filtering. At timestamp 2, a read request
to the same line from tile 7 arrives at the router. It looks
up its input port’s associated filter upon buffer write and
finds the request address (0xbeef) and requester ID hit in
the filter. Then, the request is dropped as the push packet
carries the data response for the requester.

3 Filter De-registration. At timestamp 3, the router makes
a replica of the push packet and updates the destination
in the original packet and the replica. After sending out
the replica, the corresponding filter de-registers the entry.

VC Allocation
SW Allocation

Buffer Write
Route Compute
Filtering at Port
Filter Lookup

Read Request Flit Switch and Link
Traversal

VC Allocation
SW Allocation

Filter
De-registration

Buffer Write
Route Compute

Filter Registration
Stationary Filtering

Push Head Flit Switch and Link
Traversal

2-stage router pipeline

(a) Router pipeline.

West Filter

East Filter

Routing
Unit

Routing
Unit

Routing
Unit

en_north

<addr, dest IDs>

en_west en_east

Data VCs

Request VCs

Routing
Unit

drop

COMP

COMP COMP

dropdrop

Filter Registration
Stationary Filtering

Filtering at Port
Filter Lookup

Push

Request

<addr, src ID>
en_south_lookup

hit

South Filter

(b) Router microarchitecture.
Fig. 7: Push Multicast router pipeline stages (a) and micro-
architecture (b).

The example in Fig. 6 only shows the filtering of read
requests when they enter the router. It is important that the
stationary matched read requests also get filtered. A “station-
ary” read request is one that enters the router earlier than a
push of the same line. Besides filter registration for the push
packet, it also needs to look for the matched stationary read
requests and prune them away.

Fig. 7 shows the augmented 2-stage router pipeline for read
request and push data packets as well as the microarchitecture.
The filtering actions can run in parallel with the existing
pipeline stages as shown in Fig. 7a. In the first pipeline stage,
packets perform conventional buffer writes and route compu-
tations. A push head flit also registers in the corresponding
filters, denoted as Filter Registration. Meanwhile, its meta data
is forwarded to the request virtual channels (VCs) to prune
the stationary read requests and the read requests that arrive
in the same cycle, denoted Stationary Filtering and Filtering
at Port, respectively. An incoming read request also performs
filter lookup for pruning, denoted Filter Lookup. When a push
packet leaves the router, it can de-register the filter, denoted
Filter De-registration.

Fig. 7b shows the augmented router filter structures, where
a push from port south and its interaction with the filters at

port north are shown for clarity. At each port, we allocate
a designated filter for each of the other ports. For example,
at port North, we have three filters for the other three ports
(South, East, and West). Each filter has a dedicated entry for
each input data virtual channel (VC) of the corresponding port.
For instance, South Filter has two entries for the two input
data VCs of the South port. The filter entry is similar to a
snoop filter entry, where the address is used as the tag and
the destination ID bit vector is the content. The cacheline data
is in the push multicast packet stored in the associated input
data VC. A 5-port router with 4 input data VCs per port needs
20 filters and each filter has 4 entries. The detailed filtering
actions shown in Fig. 7b are as follows:

• Filter Registration: Upon receiving a push head flit, its
output ports are computed. Then, its meta data, address,
and destinations are registered in the output ports’ corre-
sponding filters. For example, a push from the south port
registers in the computed north outport’s South Filter.

• Filtering at Port: Concurrent with Filter Registration, the
meta data is forwarded to the input port of the computed
output direction, north in this example, to filter a same-
line read request arriving in the same cycle.

• Stationary Filtering: The meta data of the push packet is
also forwarded to the input VCs of the computed output
direction (north in this example), to filter the same-line
read requests that arrive earlier than the push.

• Filter Lookup: An arriving request also checks the filter
with its address and destination. If a hit, the read request
is dropped and the reserved input VC is freed.

• Filter De-registration: The tail flit of a push packet can
de-register the entry of the corresponding filter at the
granted switch output port after it wins switch arbitration.
This entry clearance is lazy to cover the link delay so
that an incoming read request during link traversal can
be captured when it arrives at the input port.

The path of a push should be the reverse of a read request
for them to meet. We use deterministic XY routing for requests
and YX for responses to maximize the chance of filtering. This
design option is for performance rather than correctness. We
have more discussion on routing design in §VI.

D. Dynamic Pause-and-Resume Push Mechanism

We propose a mechanism to pause and resume pushing to
avoid cache pollution and overwhelming NoC traffic by useless
pushes. Specifically, a feedback-based push pause knob at each
private cache informs the LLC to exclude it from pushing, and
a resume knob at the LLC periodically restarts pushing for
those push-disabled sharers.

Push Pause Knob at Private Cache. The key idea is for
each L2 to monitor if pushes are accurate and useful for it,
and decide whether to turn pushing on or off for itself. A
pushed line is useful if it serves an outstanding read-shared
miss or it is accessed by the core before eviction. We use two
counters to record the total number of received pushes and
the number of useful ones, namely, Total Push Counter

(TPC) and Useful Push Counter (UPC). If the ratio of

Unset
need_push bit

Set
need_push bit

No

Yes

GetS Request

Cacheline 1
Cacheline 0

Cacheline N

Private L2 Cache

UPC/TPC
> 50%?

Yes

No ···

need_push bit

pushed bit

accessed bit

Used Push Counter (UPC)

Total Push Counter (TPC)

TPC
> threshold ?

Send GetS (TPC >> 1) > UPC ?

Fig. 8: Push pause knob and its workflow in private L2 cache.

the useful pushes over the total received is smaller than a
threshold, the L2 disables pushes for itself by resetting an
added need push bit in later requests to inform the LLC to
exclude it from pushing. The flowchart in Fig. 8 shows the
workflow of the pause knob. A TPC Threshold is used to
adjust the monitoring period, during which pushing is kept
enabled if TPC is less than TPC Threshold.

To compute the ratio of UPC and TPC, we use simple
logic. Specifically, for a 50% ratio threshold as used in our
experiments, push is enabled if more than 50% of the pushed
data is useful. We can check this by shifting TPC to the
right by one and comparing to UPC. Other power-of-two ratio
thresholds, such as 25% and 12.5%, can employ similarly
simple hardware implementations.

Fig. 8 also shows the hardware modifications in the private
cache, including the TPC and UPC. To track if a pushed line is
useful, we add two status bits, a pushed bit and an accessed
bit, to each cache block. The pushed bit is set when a pushed
line is installed and the accessed bit is set when the line is
accessed. Upon eviction, the UPC and TPC are incremented
accordingly depending on the status bits. The two counters
can be reset locally or by the LLC. A context switch resets the
counters. Receipt of a reset signal, embedded in a response
from the LLC, clears both counters. When the TPC is about
to overflow, both TPC and UPC are right-shifted by one bit.

Push Resume Knob at LLC. We adopt a simple periodic
push resume mechanism to re-enable pushing for private
caches that have paused it. A knob is responsible for maintain-
ing the push disabled requesters and periodically resuming. A
Push Disabled Requester Bit Map (PDRMap) is used to
record the push disabled requesters in each LLC slice. When a
push is triggered, the destinations are calculated by excluding
the disabled requesters in PDRMap from the sharers stored
in the directory entry. The knob alternates between Disable
Accepting phase and Resume phase, where each phase lasts
for a predefined period. The predefined period is set in a
Time Window counter; it counts down to zero to change phase
and resets the counter. During the Disable Accepting phase, a
private cache can turn pushing on or off for itself by feeding
back a need push flag to the LLC in a read request. If the flag
is false, the knob adds the requester to the PDRMap; otherwise,
the requester is removed from the PDRMap if it’s present.
During the Resume phase, when replying to a requester, a
reset flag is embedded in the response to clear the TPC

and UPC counters of the requester. Meanwhile, the requester

··· 150

Shared LLC Slice

Cacheline 0 Sharers

Cacheline 1 Sharers

Cacheline N Sharers

Time Window

GetS Response Destination

···

reset bit

Push Disabled Requestor Bit
Map (PDRMap)

1

Fig. 9: Push resume knob in shared LLC slice.

is removed from the PDRMap if it’s present. Adding to the
PDRMap is blocked during the Resume phase. Figure 9 shows
the knob hardware in the LLC. It adds minimum overhead:
only an N-bit PDRMap for an N-core system, a Time Window

counter, and a status bit to indicate the Disable Accepting and
Resume phase for each LLC slice.

E. Asynchronous Push Multicast

We implement an asynchronous multicast algorithm with
virtual cut-through to simplify the multicast complexity. Syn-
chronous multicasting requires reservation of all the output
ports of a multicast packet, which leads to a low success rate in
a congested network. This can lead to a hold-and-wait situation
and cause a multi-output-port dependence (or multi-output-
virtual-channel in virtual-channel routers) and cause routing
deadlocks. On the other hand, an asynchronous multicast
breaks the dependencies and a multicast packet is kept in the
buffer until all replicas are sent out to all the computed output
ports. A multicast packet can be first replicated and sent to
some of the output ports and retry after packet transmission
for the remaining output ports. A full replica delivery requires
the buffer to be large enough to hold the whole packet, and
therefore a virtual cut-through is used. Note that wormhole
flow control can also be used with single-flit data packets with
more wiring resources [2], [20].

F. Cache Coherence

We first discuss race conditions that can occur due to
pushing and introduce a handling principle to maintain co-
herence. Then, we detail our proposed coherence extension
that implements the race condition handling principle.

1) Race Conditions and Handling Principle
In this work, we assume an invalidation based protocol.

To ensure cache coherence, we need to enforce the Single-
Writer, Multiple Readers (SWMR) Invariant and the Data-
Value Invariant [49], where a read should obtain the most
up-to-date written value.

In our design, race conditions can occur between pushes and
reads, as well as between pushes and writes. It is important
to note that pushes are triggered by demand reads on shared
state and are treated as implicit reads. Therefore, there is
no violation of the SWMR invariant, and coherence is not
affected. However, the push-write race condition should be
carefully handled to preserve the data-value invariant. When a
write request is racing with an ongoing push transaction to the

TABLE I: System Configuration Parameters
Parameter Configuration

System 4×4 or 8×8 tiles @ 2 GHz system clock

OOO Core 3.5 GHz and 8-wide fetch/issue/commit
146/336 IQ/ROB and 144/112 LQ/SQ Entries

Cache Hierarchy

32KB 8-way private L1I/L1D
256KB 16-way private L2

1MB 16-way shared LLC/tile
MESI protocol, 4 memory controllers at 4 corners

Prefetchers L1 Bingo: 2KB spatial region and 16kB PHT
L2 Stride: 16 streams, 4 prefetches/stream

DRAM 1600MHz DDR3 12.8 GB/s

NoC

4×4 (or 8×8) mesh with 2 GHz 2-stage router
1-flit/5-flit control/data packet

1-flit/5-flit control/data VC
3 virtual networks (vnet) with 4 VCs per vnet

virtual cut-through flow control
XY/YX routing for request/response
1-cycle link latency with 128-bit link

Dynamic Knob

TPC and UPC: 10-bit counter
PushAck on 16-core (64-core):

TPC Threshold = 64 (8)
Time Window = 500 (1500)

OrdPush on 16-core (64-core):
TPC Threshold = 16 (16)
Time Window = 500 (1500)

TABLE II: Workloads

Workload Description Input
(256KB/512KB/1MB L2$)

backprop NN training algorithm 64K/128K/256K
cachebw [28] multi-threaded shared array scanning 8 MB array

multilevel [28] multi-level buffers, partitioned to be 4 level with 2 MB each,
scanned by distinct sets of threads 4 partitions

mlp [29], [43] multilayer perceptron
batch size: 256/512/1024
in/out feature: 1K
blocking factor: 8×8×8

mv [58] matrix-vector multiplication 32×(64K/96K/192K) matrix
64K/96K/192K vector

conv3d [58] 3D convolution input: 256×256, 16 channels
kernel: 3×3, out channels: 64

particlefilter statistical estimation of target location 2 1000×1000 frames
48000/192000/19200 particles

lud lower–upper decomposition 1024/2048/2048 matrix dim
pathfinder dynamic programming grid traversal 1.5M entries, 8 iterations

bfs breadth-first search 1M/4M/4M nodes†

approx. 600K/25M/25M edges
blackscholes option pricing and financial modeling

simlarge
bodytrack track a human body

fluidanimate simulate an incompressible fluid
freqmine frequent itemset mining in a graph
swaptions compute prices w/ Monte Carlo sim.

† Inputs are generated using the graph generator from the github repository of Ro-
dinia Benchmark for DPC++: https://github.com/artecs-group/rodinia-dpct-dpcpp (commit:
a0e80bd) [12].

M

I

Other-GetM
or Own-PutM

Own-GetMS

Other-GetS
Own-GetM

Other-GetM or
Eviction (silent)

Own-GetS or
LLC-Push

(a) Private cache.

M

S

I

P

GetS

PutS

GetS by C[i] &
C[i] ∈ Sharers

Push

Last_PushAck

PushAck

GetM/block

GetS/Unicast Data

GetM

PutM

GetS GetM

(b) Directory/LLC.
Fig. 10: Push-Ack cache coherence protocol extension on
MSI: coherence state transitions of private cache (a) and
directory/LLC (b).

same line, a private cache may receive an invalidation before
the push. Later-arriving pushed data would become stale and
violate the data-value invariant.

All private caches must observe the same processing order
for pushes and writes. To enforce this, we apply the following
handling principle: serialize racing transactions [51]. By seri-
alizing pushes and writes, we enforce the data-value invariant
and ensure cache coherence.

2) Coherence Extension
We propose two approaches for the needed serialization.

The first one extends the protocol to block write requests until
a push is completed. The second one relies on an ordered
network to ensure private caches observe the same processing
order as the request handling order at the directory.

Approach 1: Push Acknowledgment Protocol (PushAck).
Fig. 10 shows the extended MSI protocol where actions that
do not involve pushes are omitted for clarity. At a private
cache, as shown in Fig. 10a, it can receive a push from the
LLC (LLC-Push) and change state from I to S by installing the
line. Private caches should also send a PushAck message to the

directory to acknowledge the receipt of a push, which is not
shown for simplicity. At the directory as shown in Fig. 10b, the
extended protocol has a new transient state, shared push (P). A
cache line enters P state from shared (S) state when the LLC
triggers a push. The P state is a semi-blocking state. When a
line is in P state, the LLC still serves read requests (GetS) to
the line by responding with a unicast while other events are
blocked (e.g., write requests). The cache line’s state is changed
back to S from P state after receiving acknowledgments from
all sharers. This extension can be applied to various coherence
protocols (e.g. MESI and MESIF) similarly.

Approach 2: Enforcing Push-Invalidation Ordering (Or-
dPush). This approach relies on an ordered network for serial-
izing push and write operations. From the LLC’s perspective,
if a push is initiated before a write request, the push will
arrive at a given private cache earlier than a younger write’s
invalidation. For this approach, we use deterministic routing
so a push and invalidation to the same line are delivered on the
same path. We enforce this order by stalling the invalidation
if a push of the same line to the same output port is still in
the router. Specifically, for an invalidation request packet, if its
output port’s associated filter has the aliased address registered,
it is stalled. This order is free of protocol deadlock. As
invalidations and pushes are in two separate virtual networks,
the invalidation is ordered after the push and a dependency
only exists from the control network to the data network. Thus,
the OrdPush protocol is deadlock-free.

Both PushAck and OrdPush enforce the data-value invariant
and write invalidations enforce SWMR invariant, thereby en-
suring cache coherence. Note that consistency is not affected—
pushing is similar to prefetching in that it simply installs data
into cache ahead of time. Both approaches are evaluated in
this study.

https://github.com/artecs-group/rodinia-dpct-dpcpp
https://github.com/artecs-group/rodinia-dpct-dpcpp/tree/a0e80bd

������-

#
+"*

"�
,�"

���!&(%
&

&�(*
�"�

� "
*�

(

�%$,	�
#

"& #
,

"+
�

&�*�
� $

��(
��)

�"�
�!)�

�%"�
)

�%�.*(�
�!

�"+
 �

�$ #
�*�

�(
�'#

 $
�

)-
�&* %

$)

�#
��$

������-

#
+"*

"�
,�"

���!&(%
&

&�(*
�"�

� "
*�

(

�%$,	�
#

"& #
,

"+
�

&�*�
� $

��(
��)

�"�
�!)�

�%"�
)

�%�.*(�
�!

�"+
 �

�$ #
�*�

�(
�'#

 $
�

)-
�&* %

$)

�#
��$

���

���

���

���

���

�
&

�
�

�
+
&

�%
,
�

(
��

�
�

 $
�

%
�
�
�

�
*(

 �
�

����%(�)�- *��
�
�#�)� �
��%(�)�- *����#�)�

�%�"�)� $� ��� �+)���! �(��+)� �������

�

��

���

���

�
(
 ,

�
*�

��
�

��
�

�
�

High Sharing
low
load

medium to high load

Low to Medium Sharing
high
load low to medium load

Fig. 11: Execution time speedup (primary) and L2 MPKI (secondary) normalized to L1Bingo-L2Stride.

IV. EVALUATION

System Modeling and Configuration: We extend the Ruby
cache system and Garnet 3.0 [8] network in gem5 v20.1 [44]
for modeling. We configure an out-of-order CPU model that
matches the real hardware performance [21], [26]. We swept
the TPC Thresholds and Time Windows values to select
the ones with best performance. TABLE I lists the system
configuration parameters. In line with previous studies [56],
[58], we set the L2 cache size to 256KB to ensure a reasonable
simulation time for most workloads with substantial input,
thereby putting pressure on the NoC and LLC. To evaluate
the sensitivity of our technique to different cache configu-
rations, we also perform experiments with 512KB/1MB and
1MB/2MB L2/LLC cache sizes. We implemented the filter
buffer and comparison logic in RTL based on an open source
router design [23] and synthesize them using Synopsys Design
Compiler and the ASAP 7nm Predictive PDK [19]. Result
shows that xdsethe 16.3% area overhead over a baseline router
includes 8.8% for combinational logic, 1.5% for buffers, and
6% for other non-combinational logic. Note that router area is
only about 3% of the tile area reported by ASIC Piton [5].

Workloads: We select several multi-threaded workloads
from Rodinia [14] and a few OpenMP kernels and mi-
crobenchmarks that have good amount of data sharing and
are throughput-oriented to stress the shared cache and NoC.
We also include an irregular graph processing workload,
bfs, to show the neutral effect of Push Multicast on irreg-
ular access patterns due to our dynamic feedback knob. To
evaluate Push Multicast on general parallel programs, we
test all PARSEC [9] benchmarks whose parallel phase can
successfully run to completion in gem5 v20.1. For all the
workloads, we warm up the cache by either running the first
iteration for iterative applications or loading the input, and
report performance results of the following parallel phase. For
PARSEC, the parallel phase is the region of interest (ROI). We
select simlarge input for PARSEC, and large enough inputs for
other workloads to stress the cache and NoC. The workloads
and their input data sets are summarized in TABLE II.

We evaluate both PushAck and OrdPush, comparing with
a baseline with L1Bingo-L2Stride prefetchers, Coalesce [38],
and MSP [41]. L1Bingo-L2Stride adopts a bingo prefetcher [4]
at the L1 data cache and a stride prefetcher at the L2 cache.
Their settings are listed in Table I. As the code footprint is

relatively small compared to data footprint in our evaluated
benchmarks, we only push for shared data access. Config-
urations other than L1Bingo-L2Stride do not use hardware
prefetching. Coalesce groups concurrent requests for the same
line at the LLC—only the first request accesses the LLC, but
the returned data is multicast to all coalesced requesters. This
represents the best previous approach for read sharing. MSP
is a push implementation without multicasting and filtering; it
treats a read request from an existing sharer as the first read
of a previously seen/trained sequence to mimic the original
MSP [41].

A. Performance Speedup and L2 Cache Miss Rate
Fig. 11 shows the performance of different configura-

tions normalized to L1Bingo-L2Stride. In the 16-core system,
Push Multicast achieves a 1.02× geomean speedup (up to
1.56×). Coalesce benefits backprop, where it achieves a 1.38×
speedup; PushAck and OrdPush also have similar speedups
over L1Bingo-L2Stride. Generally, OrdPush is better than
PushAck. For workloads with high sharing and medium-to-
high load (i.e., memory pressure), Push Multicast can out-
perform others due to its bandwidth savings. For example,
on cachebw, for which all threads access the same data in
the same order, OrdPush achieves 1.23× speedup. Compared
with L1Bingo-L2Stride, Push Multicast achieves similar or
better performance for bandwidth-insensitive workloads when
the push accuracy is high, as in backprop and particlefilter. For
high sharing with low load (mlp), L1Bingo-L2Stride prefetch-
ing is more effective. For mlp, the implementation has a low
compute-to-memory-access ratio as no aggressive SIMD is
used. So, it has a relatively light load and is sensitive to latency,
making L1Bingo-L2Stride effective. If AI instructions like
Intel VNNI or AMX are used, the benefit of Push Multicast
would improve. The low-to-medium sharing, high-load case
(mv) is bandwidth-hungry and can benefit from Push Multicast,
while low-load workloads see a neutral effect.

For bfs, which has an irregular access pattern, L1Bingo-
L2Stride has better performance than Push Multicast. This
is because it can prefetch long adjacent lists for nodes with
a large degree while Push Multicast has no effect on data
touched by only one thread. Further analysis shows L1Bingo-
L2Stride can effectively reduce L1D MPKI from 35 to 26.1,
although L1Bingo-L2Stride and Push Multicast have similar
L2 MPKIs, which includes both demand and prefetch misses

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

dmlp mv lud

pathfi
nder bfs

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

dmlp mv lud

pathfi
nder bfs

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

dmlp mv lud

pathfi
nder bfs

0

50

100
Pu

sh
 U

sa
ge

 B
re

ak
do

w
n

(%
)

MSP PushAck OrdPush

Deadlock-Drop
Redundancy-Drop

Coherence-Drop
Unused

Miss-to-Hit
Early-Resp

Fig. 12: Push accuracy: Push usage breakdowns in private caches.

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

0

0.5

1

1.5

N
or

m
al

iz
ed

 T
ra

ff
ic

 B
re

ak
do

w
n

cachebw multilevel backpropparticlefilter conv3d mlp mv lud pathfinder bfs

Shared Data PushAck Read Request Exclusive Data WriteBack Data Others

Fig. 13: Traffic breakdowns measured in flits and normalized to L1Bingo-L2Stride.

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

(a) L1Bingo-L2Stride link loads.

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

(b) OrdPush link loads.
Fig. 14: Average link loads
of cachebw in (a) L1Bingo-
L2Stride and (b) OrdPush.

from L1D. An ablation study in Section IV-E further explains
Push Multicast does not bring extra overhead for a baseline
without prefetching. Without support for multicasts and in-
network filtering, MSP causes significant performance loss in
most workloads. This is mainly due to too many redundant
predictions leading to redundant traffic. On low-load PARSEC
benchmarks, the effect of Push Multicast is neutral. Fig. 11
also shows the average L2 MPKI. On bandwidth-hungry
workloads, Push Multicast is effective in reducing L2 misses.

Fig. 11 also shows the performance speedup for a 64-core
system to demonstrate the scalability of Push Multicast. In
larger systems, bandwidth problems can become more critical.
In addition, Push Multicast can better exploit the higher
degree of data sharing with more cores. For bandwidth-hungry
workloads, Push Multicast achieves better improvements for
the 64-core processor than the 16-core one, with up to 2.08×
speedup over the L1Bingo-L2Stride. For low-load PARSEC
workloads, Push Multicast is neutral. As PARSEC has low
load and pushes are disabled most of the time, to save space
and show clear comparisons, we exclude them and focus on
the 16-core system in the rest of the paper.

B. Push Accuracy
Push accuracy is critical, since inaccurate pushes may

pollute caches and consume extra bandwidth. Fig. 12 shows
a categorization of pushes at the private caches. Deadlock-
Drop, Redundancy-Drop, and Coherence-Drop are dropped
pushes due to deadlock avoidance, a line already existing, and
a conflict with a transient coherence upgrade, respectively.
Unused means the data is evicted without being used. The
beneficial categories are Miss-to-Hit and Early-Resp. Miss-to-
Hit means a push correctly speculates the use of a line and

turns a miss into a hit, saving miss penalty and read request
traffic. Early-Resp indicates a read request is filtered in a router
and responded to by a push. For most workloads with signifi-
cant performance improvements (cachebw, multilevel, mlp, mv,
particlefilter), push accuracy is close to perfect. For backprop,
there is significant cache pollution. Even then, backprop sees
benefits, likely because the private cache miss ratio is very
high, and the traffic savings from multicasts compensates for
overheads from unused pushes. In MSP, redundant requests
can cause large amounts of traffic, consuming extra bandwidth
and hurting performance.

C. Bandwidth2

Network Bandwidth. Fig. 13 shows the network traffic
breakdown normalized to L1Bingo-L2Stride. For workloads
improved by Push Multicast, the shared data traffic is reduced
significantly, with a maximum of 60% in cachebw with
OrdPush. One curious point is why OrdPush reduces traffic in
cachebw by 60% while improving performance only by 25%.
In addition to traffic volume, we also analyze the traffic load
of each network link shown in Fig. 14. Fig. 14a and Fig. 14b
show the network link loads for the baseline and OrdPush,
respectively, where the thickness of the arrows indicates the
load. In the baseline, traffic is distributed over the network with
the bi-sectional links busiest (red arrows). Although OrdPush
significantly reduces traffic through multicasts, YX routing
plays a role in traffic distribution. As push packets replicate
when they start to move in the X dimension, the traffic tends
to increase toward the edge routers, making the links toward

2As MSP triggers overwhelming traffic, we exclude it in the bandwidth
results to show clear comparisons for the remaining schemes.

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

2.5
2

1.5
1

0.5
0

0.5
1

1.5
2

N
or

m
. L

2
In

/E
je

ct
io

n
Tr

af
fic

 B
re

ak
do

w
n Injected Flits

Ejected Flits

cachebw multilevel backpropparticlefilter conv3d mlp mv lud pathfinder bfs

Read Request PushAck WriteBack Data Other Injection
Shared Data Exclusive Data Other Ejection

Fig. 15: L2 traffic breakdown over L1Bingo-L2Stride at injection and ejection.

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

L1
Bi

ng
o-

L2
St

rid
e

C
oa

le
sc

in
g

Pu
sh

A
ck

O
rd

Pu
sh

1.5

1

0.5

0

0.5

1

1.5

N
or

m
. L

LC
 In

/E
je

ct
io

n
Tr

af
fic

 B
re

ak
do

w
n Injected Flits

Ejected Flits

cachebw multilevel backpropparticlefilter conv3d mlp mv lud pathfinder bfs

Shared Data Exclusive Data Other Injection
Read Request PushAck WriteBack Data Other Ejection

Fig. 16: LLC traffic breakdown over L1Bingo-L2Stride at injection and ejection.

conv3d bfs
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

ov
er

 L
1B

in
go

-L
2S

tr
id

e

16
64

256
512

1024
8192

(a) TPC Threshold Sensitivity.

conv3d bfs
0.0

0.2

0.4

0.6

0.8

1.0

Sp
ee

du
p

ov
er

 L
1B

in
go

-L
2S

tr
id

e

300
400

1000
1500

2000
2500

(b) Time Window Sensitivity
Fig. 17: Sensitivity to TPC
Threshold with a 2000-cycle
time window (a) and Time Win-
dow with a 16 TPC threshold (b).

the east and west hotspots. Better traffic distribution should
further improve performance.

Private L2 Cache Bandwidth. Fig. 15 shows the average
L2 cache’s injection and ejection bandwidth normalized to
L1Bingo-L2Stride. PushAck may increase injection traffic due
to push acknowledgements—every received pushed line incurs
a PushAck message. Some of the lines also have a read
request issued, so the total injection traffic may increase.
OrdPush reduces injection traffic thanks to miss reduction
because of accurate and early pushes. On the ejection side,
the bandwidth is almost the same for workloads with accurate
pushing because multicasts do not reduce the traffic at the
destination.

LLC Bandwidth. Fig. 16 shows the injection and ejection
bandwidth of the LLC normalized to L1Bingo-L2Stride. LLC
injection traffic savings are from read-shared data due to
multicasts. A sharing degree of 16 can reduce this by 16×.
For ejection bandwidth, PushAck messages in PushAck can
incur extra bandwidth consumption.We also observe fewer
read requests arriving at the LLC, especially in push-friendly
workloads (cachebw, multilevel, particlefilter, and conv3d).
Most shared lines have 16 sharers in cachebw and particle-
filter, and 4 sharers in multilevel with 16 cores. We profiled
the average number of destinations in each data response per
LLC read-shared request. Results show 15.4, 13.7, and 4 for

cachebw, particlefilter, and multilevel, respectively, i.e., very
close to the theoretical maximum, explaining the significant
bandwidth savings.

D. Sensitivity Study

TPC Threshold and Time Window Sensitivity. We con-
duct sensitivity analyses on the TPC Threshold and Time
Window with two benchmarks sensitive to these parameters, as
shown in Fig. 17. Lower TPC thresholds can disable pushing
for a private cache earlier, but this may occur during the warm-
up phase when confidence for pushing is still low. As shown
in Fig. 17a, a smaller TPC threshold benefits bfs by disabling
pushes sooner. In contrast, conv3d risks losing optimization
opportunities if pushing is disabled too early when confidence
is low. To address this, we introduce a time window to
resume pushes, allowing for faster recovery with a smaller
window. Fig. 17b illustrates that a small time window can
restore performance benefits for conv3d even with a low TPC
threshold, while still maintaining performance for bfs.

NoC Bandwidth Sensitivity. Fig. 18 shows the speedup of
PushAck and OrdPush over L1Bingo-L2Stride under different
link bandwidths. For cachebw and multilevel, as the NoC
bandwidth increases, the benefit over baseline also improves.
This is because both workloads are bandwidth bound even with
higher bandwidth, which can alleviate the hotspot similar to

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

gmean

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

gmean
0.0

0.5

1.0

1.5
Sp

ee
du

p
ov

er
 L

1B
in

go
-L

2S
tr

id
e

PushAck OrdPush

64-bit 128-bit 256-bit 512-bit

Fig. 18: Speedup of PushAck and OrdPush normalized to L1Bingo-L2Stride over different link widths.

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

gmean

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

gmean

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

gmean
0.0

0.5

1.0

1.5

Sp
ee

du
p

ov
er

 L
1B

in
go

-L
2S

tr
id

e

256 KB/1 MB 512 KB/1 MB 1 MB/2 MB

PushAck OrdPush

Fig. 19: Speedups of PushAck/OrdPush normalized to L1Bingo-L2Stride varying L2/LLC-slice cache sizes in a 16-core system.

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

gmean

cache
bw

multil
evel

backp
rop

partic
lefilte

r
conv3

d mlp mv lud

pathfi
nder bfs

gmean
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

 L
1B

in
go

-L
2S

tr
id

e

16 cores with 4×4 mesh 64 cores with 8×8 mesh

Push Push+Multicast Push+Multicast+Filter Push+Multicast+Filter+Knob

Fig. 20: Ablation studies of OrdPush on 16-core and 64-core systems.

the one depicted in Fig. 13b. On the other hand, the speedup
of mv, mlp, and particlefilter over baseline decreases as link
bandwidth increases. Although mv has the highest network
load, it has limited data sharing. Increasing link bandwidth
improves the behavior of private data, which is dominant, and
the benefit of pushes diminishes. As link width increases, par-
ticlefilter becomes less bandwidth limited. Although pushes
can improve latency and turn misses into hits, an out-of-order
core can hide much of the LLC hit latency, especially for
the evaluated core with an aggressive design (TABLE I). So,
performance improvements decrease. As Push Multicast does
not help or harm other benchmarks, they are not sensitive to
link bandwidth changes.

Cache Configuration Sensitivity. To assess Push Multi-
cast’s sensitivity to cache configurations, we simulate a 16-
core system with larger cache sizes, including 512KB/1MB
and 1MB/2MB for L2/LLC (per core). With larger cache sizes,
we configure larger input data for some workloads to stress
NoC and LLC; the input configurations are listed in Table II.

The results in Fig. 19 demonstrate that Push Multicast shows
a consistent trend across cache configurations, highlighting its
potential for larger system setups.

E. Ablation Studies

We conducted studies by adding pushes, multicasts, filter-
ing, and dynamic control one at a time to show the synergy
of these proposed features. Fig. 20 shows 16-core and 64-
core simulation results for OrdPush. Pushes can degrade
performance for applications with moderate to high loads
because they can flood the NoC. Push+Multicast can turn
the Push degradation to improvement by reducing traffic for
workloads with moderate loads, such as mv and mlp. Inter-
estingly, it causes more degradation for high-load kernels like
cachebw and multilevel. Push+Multicast can mitigate network
contention and more read-shared requests are sent to trigger
more redundant push multicasts. In contrast, Push makes
the network more congested and delays shared-read requests
causing fewer redundant pushes. Adding the in-network filter

can effectively prune same-line read-shared requests in the
network to eliminate redundant pushes and achieve significant
improvements. Lastly, our dynamic control can pause push in
time to avoid performance harm as shown in bfs. In summary,
the proposed design components work in synergy to achieve
performance gain for push-friendly workloads while avoiding
performance degradation on others.

V. RELATED WORK

Decoupled Access/Execute (DAE) Architecture. DAE archi-
tectures separate memory accesses and computation into two
program streams on two processors, and the two communicate
through queues [25], [27], [54] to overlap memory accesses
and computation. Recent DAE proposals offload regular access
patterns as memory streams to memory access units to con-
tinuously provide data to computation units [50], [56]–[58].
Helix-RC proposes to propagate shared data in a ring network
upon a store [11]. This does not solve the bandwidth problem
of repeated read-shared sequences due to private cache eviction
rather than writes. Moreover, these techniques require intrusive
changes in both software and hardware. Instead, we propose
a hardware-only solution.
Prefetching. Data prefetching is a widely used optimization to
hide memory access latency [3], [33], [34], [62]. Some prior
studies leverage software optimizations [10], [56] or exploit
domain knowledge [18], [39] to tailor a prefetch strategy
to improve the accuracy for data-intensive workloads (e.g.,
graph analytics [7]). In comparison, our work focuses on read-
shared data access traffic reduction to alleviate NoC and LLC
bandwidth problems rather than hiding latency.
Network Optimization. The NYU Ultracomputer, a dis-
tributed shared memory machine, combines later requests
with an earlier request to the same address in the network
switches, behaving similar to MSHRs; a following response
can be delivered to all the registered requesters to reduce
latency [24]. Note that it is not hardware coherent. To maintain
coherence, the home node needs to see all requests to a given
line, or sharer information can be lost. Similarly, in GPUs,
packet coalescing and response multicasting can be used to
optimize NoC bandwidth [38], [55]. Both techniques multicast
for requests arriving within a small time window and do not
speculate about other sharers.
Coherence Prediction and Update-Based Protocol. Prior
work proposes to predict read sharers following a write or
upgrade triggered by a store in producer-consumer and migra-
tory sharing patterns [36], [37] such as memory sharing pre-
diction [41]. This is similar to an update-based protocol [17]
to tackle coherence misses. In contrast, Push Multicast targets
read-shared data accesses due to capacity misses. Specifically,
we target re-references due to private cache eviction on large
datasets instead of invalidations. Applying prior techniques
to this problem directly without multicasts and in-network
filtering can over-predict and generate redundant data traffic
and consume extra bandwidth. In addition, they aim to hide
remote access latency while we mitigate the manycore LLC
and NoC bandwidth problem.

In-Network Coherence Optimization. NoC optimizations
have been proposed for specific coherence protocol flows. An
in-network coherence protocol maintains sharers as a tree in
the routers instead of a centralized directory in the home
node [22]. It enables requests to be served by a nearby
sharer rather than the home to reduce latency. However,
each shared line has duplicate tag entries in routers between
the home node and the sharers, even for the routers whose
associated private cache does not hold the line. This incurs
large hardware overhead and is not scalable. Multicasts and
combining have been applied to invalidation packets and the
corresponding acknowledgments, respectively [40], [45]. Push
Multicast multicasts shared data packets. In iNPG [61], the
first read-exclusive request can register in the router and the
router can generate invalidations for later requests to the same
line, saving snoop time and improve performance. In contrast,
Push Multicast focuses on shared data accesses.
Cooperative Caching. Cooperative Caching [13] can obtain
data from a nearby private cache. It incurs overhead for a
Central Coherence Engine to maintain the location of data.
This can reshape on-die traffic, but does not reduce the number
of messages. In comparison, Push Multicast mitigates both
NoC and LLC bandwidth pressure.
Data Direct IO (DDIO) and Cache Stashing. Pushing data to
specific caches can save memory access time. In commercial
systems, Intel DDIO technology enables IO to directly store
data in the LLC instead of memory [31]. Cache stashing also
provides hints to store data at particular caches [2], [52]. IO-
driven cache injection also provides a similar capability [42].
Instead of being initiated by a single destination, Push Mul-
ticast targets shared data and pushes data to several sharers
speculatively. To mitigate cross-core communication in the
producer-consumer sharing pattern, Virtual-Link [59] attaches
hardware queues to the NoC for groups of producers and
consumers to facilitate their direct communication. Building
on this concept, SPAMeR [60] further speculatively pushes
messages to a predicted consumer based on the Virtual-Link
framework. Other related work also targets producer-consumer
sharing patterns, including cache injection [46], [47], curious
caching [15], [16], and speculative pushes [53], [60]. In
contrast, Push Multicast targets a multi-reader sharing pattern
and optimizes the efficiency of read-shared data accesses
through speculative push multicast. This approach effectively
mitigates the LLC and NoC bandwidth issues caused by high
capacity misses from read-shared accesses associated with
large working set sizes.

VI. DISCUSSION AND FUTURE DIRECTIONS

Push Multicast provides a new way to optimize shared-
memory multi-threaded applications: having a shared level of
the cache hierarchy speculate about future accesses to shared
data. However, there is significant room for future research to
refine the concept.

Pushes for GPUs. GPGPU programs often trigger similar
behavior across GPU compute engines at any given point in
time. This makes it easy to infer the sharing behavior and

shared data access pattern. This is a good match for Push
Multicast. Further, the simple design of Push Multicast would
be a great fit for GPGPU throughput processors, which we
plan to explore in the future.

Pushes and Routing Design. We use XY for request and
YX for response to maximize the chance of filtering. If we
use another scheme or adaptive routing, it only affects perfor-
mance, not correctness. For example, an unfiltered GetS can
trigger another push in OrdPush and a unicast in PushAck if
the previous push is outstanding (i.e., the cache state is P). An
interesting topic is designing push-aware request and multicast
routing algorithms. Despite multicasts saving bandwidth, the
final copies that branch out from a multicast packet go to
the original number of destinations. As shown in Fig. 14, the
network bottleneck may be shifted to new locations. Designing
a multicast algorithm with balanced load while maximizing
filtering is challenging.

Instruction Hints and Prefetching Multicast. Instruction
hints can be used to steer hardware. For example, instructions
can embed hints for cache management such as prefetching,
cache bypassing and cache stashing [2], [52]. Similarly, an
instruction could provide a hint to the LLC for pushing.
One interesting direction is to exploit the read-sharing insight
and explore software and hardware prefetching techniques
to trigger speculative multicasts. For instruction hints and
software prefetch-triggered multicasts, challenges include how
to specify the sharers, especially in a virtualized environment,
and how to efficiently handle duplicate multicasts. For a
hardware-based approach, smart sharer prediction is required
for accurate speculative multicasts.

Interplay of Push and Prefetch. This work focuses on
throughput-oriented workloads with significant sharing. Such
workloads often exhibit regular access patterns that facili-
tate accurate prefetching. However, their bandwidth-intensive
nature can exacerbate network and LLC contention due to
prefetching, delaying demand requests or responses. For these
workloads, prefetching at different cache levels offers limited
benefits. In contrast, multi-level prefetching is more effective
for latency-sensitive workloads. Enhanced prefetching can
hide more latency while reducing the impact on bandwidth-
sensitive workloads. However, effective push multicast con-
sistently delivers substantial benefits in bandwidth-sensitive
scenarios. An intriguing future direction is to combine push
multicasting and prefetching. Our preliminary findings indicate
that enabling both pushing and prefetching does not con-
sistently yield good performance in all cases. For example,
with accurate prefetching, pushing for prefetching requests can
bring performance gains for high sharing and medium to high
load cases, such as cachebw, multilevel, particlefilter. But for
other high load or high sharing scenarios (mv, conv3d), the
combination cannot easy to bring benefits. For low load cases,
the combination can get benefit of prefetching. In summary,
their effective interplay is nontrivial and necessitates precise
prefetching or intelligent throttling mechanisms, which we
propose for future research.

General Push Multicast. The current Push Multicast only

targets read-shared sequences caused by capacity misses. This
work can be extended to cover more patterns such as producer-
consumer and migratory sharing. We can also explore enabling
push multicasts for LLC misses. A sharer predictor decoupled
from the directory can be designed to support protocols with
either silent or non-silent evictions of shared lines and enable
the possibility of push multicasting on LLC misses.

Multi-Level Caches. Our design only pushes data one level
up from the shared cache. In multi-level private caches, data
can be propagated to upper levels. For systems with multiple
levels of shared cache, our design can be applied to each
shared level. Further research can explore sharer prediction
that decouples from the directory to propagate and trigger push
multicasts across several shared levels. Challenges include how
to guarantee the design is free of deadlock and livelock, and
proper handling of race conditions.

Push Multicast on Other NoCs. Although this paper
focuses on meshes, our design can be adapted to other NoC
architectures, including rings and chiplet-based networks. For
example, in a ring topology, the filter can be implemented
in a ring stop and the request and response routing can be
reversed. For a chiplet-based network, the die-to-die interface
or boundary router can be augmented with an in-network filter
and the multicast can be applied across chiplets.

VII. CONCLUSION

Shared data accesses are a major bandwidth consumer in
manycore processors. Our characterization shows that they
can be inferred and that speculative multicasting is promis-
ing for reducing bandwidth consumption. We conceptualize
push multicasts and propose a hardware solution to send a
speculative multicast to cover future shared data accesses. The
pushes act as a representative of a shared line in the network.
This enables routers to filter on-the-fly read requests to the
same line from a requester that is included in the push. Our
evaluation shows that Push Multicast is effective for parallel
programs whose threads perform similar tasks with a geomean
of 1.02× (1.11×) speedup in a 16-core (64-core) system. We
also outline the future direction of Push Multicast towards
shared data access optimizations for general parallel programs.

ACKNOWLEDGMENTS

We thank the shepherd and anonymous reviewers for their
valuable comments and suggestions. We sincerely thank Xin-
feng Xie for the discussions on benchmarks in the early
phase of this work. We especially appreciate Zhengrong
Wang for providing the gem5 version with AVX-512 sup-
port and the related benchmarks. This work was supported
in part by the National Key R&D Program of China (No.
2024YFB4505800), the National Natural Science Foundation
of China (No. 62402411), the Guangdong Provincial Talent
Program (No. 2023QN10X252), the Guangzhou-HKUST(GZ)
Joint Funding Program (No. 2024A03J0624), Research Grants
Council of HKSAR (16213824), and a gift from Intel.

REFERENCES

[1] AMD, ““Bergamo”’ 4th Gen AMD EPYC™ 97x4 Processors: Built
for Cloud Native Workloads,” https://community.amd.com/t5/epyc-
processors/quot-bergamo-quot-4th-gen-amd-epyc-97x4-processors-
built-for/ba-p/612701, 2023, [Online; accessed 3-August-2023].

[2] ARM, “AMBA 5 CHI Architecture Specification, Issue F,” 2022.
[3] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme

to reduce data access penalty,” in Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, 1991, pp. 176–186.

[4] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
2019, pp. 399–411.

[5] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang et al., “Openpiton: An open
source manycore research framework,” ACM SIGPLAN Notices, vol. 51,
no. 4, pp. 217–232, 2016.

[6] N. Barrow-Williams, C. Fensch, and S. Moore, “A communication
characterisation of splash-2 and parsec,” in 2009 IEEE international
symposium on workload characterization (IISWC). IEEE, 2009, pp.
86–97.

[7] A. Basak, S. Li, X. Hu, S. M. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and optimization of the memory hierarchy for graph
processing workloads,” in 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2019, pp. 373–
386.

[8] S. Bharadwaj, J. Yin, B. Beckmann, and T. Krishna, “Kite: A family of
heterogeneous interposer topologies enabled via accurate interconnect
modeling,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020, pp. 1–6.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, 2008, pp. 72–81.

[10] D. Callahan, K. Kennedy, and A. Porterfield, “Software prefetching,”
ACM SIGARCH Computer Architecture News, vol. 19, no. 2, pp. 40–
52, 1991.

[11] S. Campanoni, K. Brownell, S. Kanev, T. M. Jones, G.-Y. Wei, and
D. Brooks, “Helix-rc: An architecture-compiler co-design for automatic
parallelization of irregular programs,” in 2014 ACM/IEEE 41st Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2014, pp.
217–228.

[12] G. Castaño, Y. Faqir-Rhazoui, C. Garcı́a, and M. Prieto-Matı́as, “Evalua-
tion of Intel’s DPC++ Compatibility Tool in heterogeneous computing,”
Journal of Parallel and Distributed Computing, vol. 165, pp. 120–129,
2022.

[13] J. Chang and G. Sohi, “Cooperative caching for chip multiprocessors,”
in 33rd International Symposium on Computer Architecture (ISCA’06),
2006, pp. 264–276.

[14] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the rodinia benchmark suite with
comparison to contemporary cmp workloads,” in IEEE International
Symposium on Workload Characterization (IISWC’10), 2010, pp. 1–11.

[15] D. Chiou and B. S. Ang, “Method and apparatus for curious and column
caching,” Apr. 9 2002, US Patent 6,370,622.

[16] D. Chiou et al., “Extending the reach of microprocessors: Column
and curious caching,” Ph.D. dissertation, Massachusetts Institute of
Technology, 1999.

[17] G. Chirkov and D. Wentzlaff, “Seizing the bandwidth scaling of on-
package interconnect in a post-moore’s law world,” in Proceedings of
the 37th International Conference on Supercomputing, 2023, pp. 410–
422.

[18] S. Choi, N. Kohout, S. Pamnani, D. Kim, and D. Yeung, “A general
framework for prefetch scheduling in linked data structures and its
application to multi-chain prefetching,” ACM Transactions on Computer
Systems (TOCS), vol. 22, no. 2, pp. 214–280, 2004.

[19] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[20] W. Dally, “Reflections on 21 years of NoCs,” 2022, keynote II at
the 2022 International Symposium on Networks-on-Chip (NOCS).
[Online]. Available: https://youtu.be/Nk3oQm9NxcY

[21] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, 2017.

[22] N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,” in
2006 39th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO’06). IEEE, 2006, pp. 321–332.

[23] A. Galimberti, F. Testa, and A. Zeni, “RTL Router Design in Sys-
temVerilog,” https://github.com/agalimberti/NoCRouter, 2017, [Online;
accessed 17-July-2024].

[24] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph,
and M. Snir, “The nyu ultracomputer—designing a mimd, shared-
memory parallel machine,” ACM SIGARCH Computer Architecture
News, vol. 10, no. 3, pp. 27–42, 1982.

[25] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in 2011 IEEE 17th
International Symposium on High Performance Computer Architecture.
IEEE, 2011, pp. 503–514.

[26] U. D. C. A. R. Group, “gem5 skylake config,” https://github.com/darchr/
gem5-skylake-config.

[27] T. J. Ham, J. L. Aragón, and M. Martonosi, “Desc: Decoupled supply-
compute communication management for heterogeneous architectures,”
in 2015 48th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2015, pp. 191–203.

[28] A. Heinecke, “ArchBenchSuite,” https://github.com/alheinecke/
ArchBenchSuite/tree/485cb48.

[29] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “Libxsmm:
accelerating small matrix multiplications by runtime code generation,”
in SC’16: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2016, pp.
981–991.

[30] Intel, “Intel® Architecture Instruction Set Extensions and Future Fea-
tures Programming Reference,” Tech. Rep., September 2022.

[31] Intel, “Intel® Data Direct I/O Technology,” https://www.intel.com/
content/www/us/en/io/data-direct-i-o-technology.html, 2022, [Online;
accessed 21-November-2022].

[32] Intel, “Four Takeaways from Intel’s Investor Webinar,”
https://www.intel.com/content/www/us/en/newsroom/news/four-
takeaways-from-intel-investor-webinar.html, 2023, [Online; accessed
3-August-2023].

[33] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 2013, pp. 247–259.

[34] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” ACM
SIGARCH Computer Architecture News, vol. 18, no. 2SI, pp. 364–373,
1990.

[35] K. Kabir, A. Haidar, S. Tomov, and J. J. Dongarra, “On the design, devel-
opment, and analysis of optimized matrix-vector multiplication routines
for coprocessors,” in High Performance Computing - 30th International
Conference, ISC High Performance 2015, Frankfurt, Germany, July 12-
16, 2015, Proceedings, ser. Lecture Notes in Computer Science, J. M.
Kunkel and T. Ludwig, Eds., vol. 9137. Springer, 2015, pp. 58–73.

[36] S. Kaxiras and J. R. Goodman, “Improving cc-numa performance
using instruction-based prediction,” in Proceedings Fifth International
Symposium on High-Performance Computer Architecture. IEEE, 1999,
pp. 161–170.

[37] S. Kaxiras and C. Young, “Coherence communication prediction in
shared-memory multiprocessors,” in Proceedings Sixth International
Symposium on High-Performance Computer Architecture. HPCA-6.
IEEE, 2000, pp. 156–167.

[38] K. H. Kim, R. Boyapati, J. Huang, Y. Jin, K. H. Yum, and E. J. Kim,
“Packet coalescing exploiting data redundancy in gpgpu architectures,”
in Proceedings of the International Conference on Supercomputing,
2017, pp. 1–10.

[39] N. Kohout, S. Choi, D. Kim, and D. Yeung, “Multi-chain prefetching:
Effective exploitation of inter-chain memory parallelism for pointer-
chasing codes,” in Proceedings 2001 International Conference on Par-
allel Architectures and Compilation Techniques. IEEE, 2001, pp. 268–
279.

[40] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt, “Towards
the ideal on-chip fabric for 1-to-many and many-to-1 communication,”
in Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, 2011, pp. 71–82.

https://community.amd.com/t5/epyc-processors/quot-bergamo-quot-4th-gen-amd-epyc-97x4-processors-built-for/ba-p/612701
https://community.amd.com/t5/epyc-processors/quot-bergamo-quot-4th-gen-amd-epyc-97x4-processors-built-for/ba-p/612701
https://community.amd.com/t5/epyc-processors/quot-bergamo-quot-4th-gen-amd-epyc-97x4-processors-built-for/ba-p/612701
https://youtu.be/Nk3oQm9NxcY
https://github.com/agalimberti/NoCRouter
https://github.com/darchr/gem5-skylake-config
https://github.com/darchr/gem5-skylake-config
https://github.com/alheinecke/ArchBenchSuite/tree/485cb48
https://github.com/alheinecke/ArchBenchSuite/tree/485cb48
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/newsroom/news/four-takeaways-from-intel-investor-webinar.html
https://www.intel.com/content/www/us/en/newsroom/news/four-takeaways-from-intel-investor-webinar.html

[41] A.-C. Lai and B. Falsafi, “Memory sharing predictor: The key to a spec-
ulative coherent dsm,” in Proceedings of the 26th annual international
symposium on Computer architecture, 1999, pp. 172–183.

[42] E. A. León, K. B. Ferreira, and A. B. Maccabe, “Reducing the impact
of the memorywall for i/o using cache injection,” in 15th Annual IEEE
Symposium on High-Performance Interconnects (HOTI 2007). IEEE,
2007, pp. 143–150.

[43] LIBXSMM, “LIBXSMM,” https://github.com/libxsmm/libxsmm/tree/
4ac333b.

[44] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharad-
waj et al., “The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[45] S. Ma, N. E. Jerger, and Z. Wang, “Supporting efficient collective
communication in nocs,” in IEEE International Symposium on High-
Performance Comp Architecture. IEEE, 2012, pp. 1–12.

[46] A. Milenkovic and V. Milutinovic, “Cache injection on bus based mul-
tiprocessors,” in Proceedings Seventeenth IEEE Symposium on Reliable
Distributed Systems (Cat. No. 98CB36281). IEEE, 1998, pp. 341–346.

[47] V. Milutinovic, A. Milenkovic, and G. Sheaffer, “The cache injec-
tion/cofetch architecture: initial performance evaluation,” in Proceedings
Fifth International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems. IEEE, 1997, pp. 63–64.

[48] S. S. Mukherjee and M. D. Hill, “Using prediction to accelerate
coherence protocols,” in Proceedings of the 25th annual international
symposium on Computer architecture, 1998, pp. 179–190.

[49] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A Primer on
Memory Consistency and Cache Coherence. Springer Nature, 2020.

[50] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in 2017 ACM/IEEE 44th Annual Inter-
national Symposium on Computer Architecture (ISCA). IEEE, 2017,
pp. 416–429.

[51] N. Oswald, V. Nagarajan, and D. J. Sorin, “Protogen: Automatically gen-
erating directory cache coherence protocols from atomic specifications,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 247–260.

[52] J. Park, R. M. Yoo, D. S. Khudia, C. J. Hughes, and D. Kim, “Location-
aware cache management for many-core processors with deep cache
hierarchy,” in SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2013, pp. 1–12.

[53] R. Rajwar, A. Kägi, and J. R. Goodman, “Inferential queueing and
speculative push for reducing critical communication latencies,” in
Proceedings of the 17th annual international conference on Supercom-
puting, 2003, pp. 273–284.

[54] J. E. Smith, “Decoupled access/execute computer architectures,” in 25
years of the international symposia on Computer architecture (selected
papers), 1998, pp. 231–238.

[55] L. Wang, X. Zhao, D. Kaeli, Z. Wang, and L. Eeckhout, “Intra-cluster
coalescing to reduce gpu noc pressure,” in 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2018,
pp. 990–999.

[56] Z. Wang and T. Nowatzki, “Stream-based memory access specialization
for general purpose processors,” in 2019 ACM/IEEE 46th Annual Inter-
national Symposium on Computer Architecture (ISCA). IEEE, 2019,
pp. 736–749.

[57] Z. Wang, J. Weng, S. Liu, and T. Nowatzki, “Near-stream computing:
General and transparent near-cache acceleration,” in 2022 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2022, pp. 331–345.

[58] Z. Wang, J. Weng, J. Lowe-Power, J. Gaur, and T. Nowatzki, “Stream
Floating: Enabling Proactive and Decentralized Cache Optimizations,” in
Proceedings of the 27th International Symposium on High Performance
Computer Architecture (HPCA-27), February 2021.

[59] Q. Wu, J. Beard, A. Ekanayake, A. Gerstlauer, and L. K. John,
“Virtual-link: A scalable multi-producer multi-consumer message queue
architecture for cross-core communication,” in 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021,
pp. 182–191.

[60] Q. Wu, A. Ekanayake, R. Li, J. Beard, and L. John, “Spamer: Specu-
lative push for anticipated message requests in multi-core systems,” in
Proceedings of the 51st International Conference on Parallel Processing,
2022, pp. 1–12.

[61] Y. Yao and Z. Lu, “inpg: Accelerating critical section access with in-
network packet generation for noc based many-cores,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2018, pp. 15–26.

[62] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “Imp: Indirect memory
prefetcher,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015, pp. 178–190.

ARTIFACT APPENDIX

A. Abstract
The artifact contains the codes for Push Multicast, along

with its setup and running descriptions. We provide instruc-
tions and click-to-run scripts for reproducing the main results
presented in our paper. Specifically, we reproduce the results
for Fig. 2, Fig. 3, Fig. 11–13, and Fig. 15–20.

B. Artifact check-list (meta-information)
• Program: Multi-threaded workloads from Rodinia [14] and

PARSEC [9] benchmark suites, and a few OpenMP kernels and
microbenchmarks from Gem Forge Framework [58] and Intel’s
library [29].

• Run-time environment: We provide a Docker for users, which
removes large burdens in setting up the environment.

• Compilation: We include the installation of specific compiler
(like LLVM) in our click-to-run script.

• Data set: We include the data set in our project.
• Experiments: We include the command for simulation in our

click-to-run script. We also provide a standalone script for
running simulations.

• Metrics: We evaluate the execution time, traffic, MPKI, and
push accuracy in our evaluation.

• Output: The outputs of the artifact are figures in PDF format
that reproduce the main results of our paper.

• How much disk space required (approximately)?: The disk
space should be larger than 2 TB.

• How much time is needed to prepare workflow (approxi-
mately)?: The preparation includes building a Docker image,
cloning the Git repository, and compiling. With a core count of
64, we estimate the time required to be approximately 2 hours.

• How much time is needed to complete experiments (ap-
proximately)?: The simulation time varies among different
benchmarks. The shortest time spent on some benchmarks is
a few minutes, while the longest time spent on others can be
up to a week. In total, we have 444 jobs for all experiments, and
we limit the core count to 64, so we estimate the time required
to be approximately 11 days.

• Publicly available?: Yes.

C. Description
1) How to access
The artifact is archived in Zenodo3. It can also be accessed

from GitHub, as the command shown below:

$ git clone https :// github.com/redbird -
arch/push -multicast -artifact.git

2) Hardware dependencies
For reference, we list our system configurations here:
• OS: CentOS Linux release 7.9.2009
• CPU: Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz (64

cores); Other CPU would work.
• DRAM: 2 TB
• Disk: 2 TB

3https://doi.org/10.5281/zenodo.14355343

https://github.com/libxsmm/libxsmm/tree/4ac333b
https://github.com/libxsmm/libxsmm/tree/4ac333b

3) Software dependencies
The software dependencies are resolved by the Docker

environment we provide. Users are required to support Docker
commands on their machines if they are using the provided
Docker environment.

D. Installation

We provide two scripts: one to build the Docker image
and another to enter the Docker container. The commands are
shown below:

Build the docker image
$ bash build -docker -image.sh

Enter the docker container
$ bash enter -docker -container.sh

E. Experiment workflow

We provide two scripts: one executes the compilation and
runs a quick experiment to produce the results shown in
Fig. 4, while the other runs the remaining experiments. The
commands are shown below:

Compilation and quick experiment
$ bash run -violin.sh

Remaining experiments and figures
$ bash run -remain.sh

We also provide a single script for clicking to run the full
artifact. The command is shown below:

Compilation , experiments , and figures
$ bash run -all.sh

We also provide individual scripts for each step in the
workflow. The commands are shown below:

$ cd push -multicast

Compile benchmarks
$ bash benchmark -compilation.sh

Compile gem5
$ bash gem5 -compilation.sh

Run quick experiments
$ bash run -experiment -violin.sh

Run remaining experiments
$ bash run -experiment -remain.sh

Generate figures.
$ bash plot -figure.sh

F. Evaluation and expected results

The results and figures can be found in the directories m5out
and figures/reproduce, respectively.

G. Notes

The README.md file of the artifact provides additional infor-
mation on the organization of the code and detailed steps for
running experiments.

	Introduction
	Background and Motivation
	Manycore Architecture
	Motivation

	The Push Multicast Approach
	Overview
	Cache Push Mechanism
	Coherent In-Network Filter
	Dynamic Pause-and-Resume Push Mechanism
	Asynchronous Push Multicast
	Cache Coherence
	Race Conditions and Handling Principle
	Coherence Extension

	Evaluation
	Performance Speedup and L2 Cache Miss Rate
	Push Accuracy
	BandwidthAs MSP triggers overwhelming traffic, we exclude it in the bandwidth results to show clear comparisons for the remaining schemes.
	Sensitivity Study
	Ablation Studies

	Related Work
	Discussion and Future Directions
	Conclusion
	References
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Notes

