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Abstract—The explosion of data availability and the demand
for faster data analysis have led to the emergence of applica-
tions exhibiting large memory footprint and low data reuse
rate. These workloads, ranging from neural networks to graph
processing, expose compute kernels that operate over myriads
of data. Significant data movement requirements of these
kernels impose heavy stress on modern memory subsystems
and communication fabrics. To mitigate the worsening gap
between high CPU computation density and deficient memory
bandwidth, solutions like memory networks and near-data
processing designs are being architected to improve system
performance substantially.

In this work, we examine the idea of mapping compute ker-
nels to the memory network so as to leverage in-network com-
puting in data-flow style, by means of near-data processing. We
propose Active-Routing, an in-network compute architecture
that enables computation on the way for near-data processing
by exploiting patterns of aggregation over intermediate results
of arithmetic operators. The proposed architecture leverages
the massive memory-level parallelism and network concurrency
to optimize the aggregation operations along a dynamically
built Active-Routing Tree. Our evaluations show that Active-
Routing can achieve upto 7× speedup with an average of
60% performance improvement, and reduce the energy-delay
product by 80% across various benchmarks compared to the
state-of-the-art processing-in-memory architecture.

Keywords-memory network; data-flow; in-network comput-
ing; near-data processing; processing-in-memory

I. INTRODUCTION

With the improvement of technology and advent of nu-
merous network connected devices, the amount of data
generated has been exploding. This leads to an increas-
ing demand for fast data analysis to extract values from
these humongous amounts of data. Hence, data analytic
applications that process these bulk of data exhibit large
memory footprint and low data reuse rate. These workloads,
ranging from neural networks to graph processing [1], [2],
have simple compute kernels that operate over a myriad
of data. The simple computations of these kernels and the
large amounts of data to be processed cause significant
data movements across the memory hierarchy. As a result,
modern memory subsystems and communication fabrics
are under enormous pressure. Furthermore, due to the gap
between dense CPU computation power and deficient data
supply, computer systems fail to achieve their peak compu-
tational capability. Therefore, architectural innovations are
imperative to reduce data movement for gaining substantial

improvements in terms of system performance as well as
energy efficiency.

Recently, a significant amount of research efforts have
been made for designing data-centric computer systems. To
keep pace with processors’ computation capabilities, new
memory designs such as Hybrid Memory Cube (HMC) [3]
and High Bandwidth Memory (HBM) [4] provide higher
bandwidth by utilizing 3D stacking [5]. In addition, the tra-
ditional processor-centric design is not cost-effective to scale
memory capacity and is suboptimal for system bandwidth
provision [6]. On the other hand, memory-centric designs
are proposed to connect memory modules to form a memory
network as a large memory pool as well as to fully utilize
processor and memory bandwidth [6], [7]. These design
adoptions may alleviate the data response bottleneck, but
still require a considerable amount of data movement due
to imposing heavy stress on the communication fabrics and
consuming excessive energy.

Previous research has proposed various techniques to
reduce data movement across the memory hierarchy to
improve the system efficiency. Near-data processing (NDP),
as a promising compute paradigm, has driven new archi-
tectures to move computations near data-resident locations,
such as cache and memory. Aga et al. proposed compute
cache [8] that uses bit-line circuit technology to perform
simple computation in the cache to enable in-place com-
puting. Processing-in-memory (PIM) [9], [10], [11], [12],
[13], [14], [15], [16], [17] is an alternative NDP design that
introduces compute elements in memory for data processing.
Recent studies [18], [19] have proposed to integrate PIM
architectures within modern systems in a seamless fashion.
They extended the instruction set to offload computations to
data-resident memory modules. These mechanisms achieve
better efficiency compared to conventional computing due to
reduced data movements. They are most effective in the case
of irregular memory accesses and atomic write operations.
However, they are suboptimal when performing simple tasks
over a large size of raw data, such as dot product, since they
need to fetch part of the data across the memory network
for further processing when data are not located in the same
module that incurs communication and energy overhead.

Prior research [20], [21], [22] has advocated to provide
computation power as well as routing functionalities in com-
munication fabrics. The NYU Ultracomputer [23] introduced
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adders in routers to combine fetch-and-update requests for
the same shared variable. Panda [24] and Chen et al. [25]
proposed similar hardware to optimize reduction in the
network interface for MPI collective communications. These
mechanisms only support pure reduction operations and
cannot accelerate operations like dot product, thus require
significant data movements across the memory hierarchy to
first compute the intermediate results. Recently, Kwon et al.
proposed MAERI [26] to improve efficiency for data-flow
computations in deep neural network accelerators, which
does not target general applications. The multiply operations
require data to be brought to local SRAM and are calculated
only at leaf nodes in the tree-based network topology.
These in-network compute solutions have limited adaptivity
since the reduction tree/ring is statically tied to the network
topology. As part of our proposal, we redesign the inter-
connect fabric to support more diverse compute operations
and to provide topology-oblivious dynamic routing tree for
reduction acceleration.

We propose Active-Routing, an in-network compute ar-
chitecture that enables compute on the way for near-data
processing. We examine the idea of mapping compute ker-
nels to the memory network for data-flow style processing
by exploiting the pattern of aggregation over intermediate
results of arithmetic operators. It seeks to schedule compu-
tations at routers attached to memory so as to take advan-
tage of the massive bandwidth and parallelism in memory.
Meanwhile, it dynamically builds topology-oblivious Active-
Routing trees and leverages the network concurrency to
optimize reduction operations along the routing path. We
also categorize the memory access patterns of the operands
for arithmetic operators and propose optimizations to exploit
both regular and irregular memory accesses.

The major contributions of this paper are as follows.
• We propose an in-network compute architecture,

Active-Routing, which moves computation closer to
data in the memory network, and aggregate compute
results on the way along the routing path.

• We present a novel mechanism with three-phase packet
processing: Active-Routing Tree construction, Update
Phase for data processing, and Gather Phase for Active-
Routing reduction. It dynamically builds topology-
oblivious routing trees to optimize reduction opera-
tion following data processing by exploiting massive
memory-level parallelism and network concurrency.

• We categorize memory access patterns of processed
data into three groups, and propose enhancement tech-
niques with various offloading granularities to amortize
offloading overhead by leveraging their characteristics.

• Our evaluations show that Active-Routing can achieve
up to 7× speedup with an average of 60% performance
improvement and reduce energy-delay product by 80%
on average across various benchmarks over the state-
of-the-art processing-in-memory architecture.

The rest of the paper is organized as follows. Section II
presents the background for this research. In Section III we
introduce Active-Routing followed by Section IV describing
its implementation. We present the evaluation methodology
in Section V and analyze our experiment results in Sec-
tion VI. The related work is detailed in Section VII. Finally,
we conclude our work in Section VIII.

II. BACKGROUND

In this section, we first introduce die-stacked memory
and its support for processing-in-memory (PIM). Then we
explain the memory network and the potential of in-network
computing for enhancing near-data processing.
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Figure 1. Hybrid Memory Cube

A. Die-Stacked Memory

Advancements in memory technology have facilitated the
integration of logic and memory dies using 3D stacking [5].
In die-stacked memory, DRAM layers are stacked on top
of a logic layer. The DRAM layers are connected with the
logic layer using high bandwidth, and low-latency Through-
Silicon Vias (TSV). Hybrid Memory Cube (HMC) [3] and
High Bandwidth Memory [4] are two popular examples of
die-stacked memory. Without loss of generality, we demon-
strate Active-Routing using HMC in this paper. Note that it
can also be applied to other memory technology and inter-
connects like HBM and active interposers. Figure 1 shows
the organization of HMC, which is partitioned vertically into
several vaults consisting of multiple TSV connections to the
logic layer. Each vault is controlled by a vault controller
implemented on the logic die. The vault controllers are
sparsely placed and that leaves ample amount of unused
silicon area to deploy more complex functional logics. It
has been used to implement computation capability ranging
from limited functionality [18], [12], [11] to full-fledged
processors [9], [15]. HMC communicates with processor or
other memory cubes through four ports. Inside the cube’s
logic die, an intra-cube network is used to route the packets
between the vaults and ports. HMC also enables larger
memory size per package and provides abundant internal
and external bandwidth with TSVs and high-speed link
protocol. These advantages are leveraged in many existing
PIM studies [9], [15].

B. Memory Network

Conventional systems with DDR memory have capacity
limits and bandwidth bottleneck due to the limited number
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Figure 2. System Configuration with (a) a Host CPU Connected to (b) a
Memory Network with an Active-Routing example.

of pins per processor chip. Therefore, it requires more
processor sockets in such systems to scale their memory ca-
pacity. However, the overweight data movement with respect
to light computation in emerging data-centric applications
can lead CPU to be under-utilized. In contrast, HMCs
can be chained together to form a cost-effective memory
network using packet switching and provide large memory
capacity. In addition, commonly adopted processor-centric
design optimizes processor-to-processor communication but
overlooks the overall system bandwidth utilization. A recent
study [6] has shown that memory-centric designs can achieve
better bandwidth utilization as compared to processor-centric
designs.

C. In-Network Compute Potential

Supported by the advanced die-stacked memory tech-
nology, PIM architectures have been widely studied to
realize near-data processing. With high-bandwidth and large
memory capacity provision, a memory network is adopted to
scale PIM architectures for accelerating data-centric appli-
cations [9]. One unsolved problem of such a system is how
to determine the compute point for data located remotely.
This computation can be mapped to a data-flow graph and
naturally scheduled as network flows along with compu-
tation. In-network computing, which takes communication
into account, can further reduce data movement and improve
system efficiency by exploiting memory-level parallelism
as well as network concurrency. In this paper, we propose
Active-Routing as a step towards in-network computing.

III. ACTIVE-ROUTING ARCHITECTURE

In this section, we first illustrate Active-Routing by walk-
ing through an example. Then we describe its three-phase
packet processing procedure. Lastly, we categorize the mem-
ory access patterns of the data to be processed and propose
enhancements to reduce offloading overhead by leveraging
their characteristics.

A. Architectural Overview

Figure 2 presents the system configuration, where host
processors are connected to a memory network formed by
chaining HMCs. In this system, we show an example of
Active-Routing in the memory network that computes sum

+= A[i]×B[i] over a large loop with loop-index i. Each
computation of A[i]×B[i] is offloaded from host CPU to
memory network as an Update packet. Update packets are
scheduled for computation at the memory cubes near to the
operand locations to compute the partial sum through NDP.
After Update offloading, a Gather packet is sent to collect
the partial results from each cube, and reduce them in the
network routers on the way back to the host.

Figure 3 shows the three phases of Active-Routing as it
progresses in the timeline for this example, namely ARTree
Construction, Update and Gather Phase.

• While offloading Update packets, an Active-Routing
Tree (ARTree) is being constructed along the packets’
paths to the scheduled compute memory cubes. For
example, in Figure 2 (b), an Update packet is sent from
CPU through memory cube 0 to cube 8. It records the
tree nodes and builds a tree branch along its path to
cube 8. Update packets scheduled at different cubes
construct different branches. These branches altogether
form an ARTree, as abstracted in Figure 3 (a).

• The offloaded computations drive near-data processing
during the Update Phase as shown in Figure 3 (b).
Each operation A[i]×B[i] needs to request its source
operands A[i] and B[i] to finish the computation and
update the partial sum in the scheduled cube. Figure 3
(b) also shows a case where two operands do not reside
in the same cube. In such scenarios, the Update packet
will be sent to the scheduled compute point that is
the last common cube of the minimum routes (cube
12) for both operands: 1 it replicates to issue two
operand requests for Ak and Bk to the resident memory
cube 13 and cube 15, respectively. 2 Then, the two
operand responses are replied to cube 12 to complete
the computation. All the intermediate results in the
same compute cube are reduced to a partial sum in
the cube during this phase.

• Figure 3 (c) shows the Gather Phase when Gather
packet is issued after sending all the Update packets. It
is replicated from the root to each node of the ARTree.
Then Gathers at leaf nodes initiate network reduction of
partial sums computed in the previous phase in dataflow
manner to the root along the ARTree.

B. Three-Phase Packet Processing

In general, Active-Routing maps a compute kernel in
memory network to optimize reduction over intermediate
results of arithmetic operators. We name such a mapping as
an Active-Routing flow. A unique identification (flow ID) is
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Figure 3. Active-Routing Consists of Three Phases: (a) Active-Routing Tree Construction on-the-fly; (b) Near-Data Processing in Update Phase; and (c)
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assigned for each flow and its corresponding ARTree. Each
flow involves a three-phase packet processing procedure as
shown in Figure 4.

ARTree Construction. For each flow, an ARTree is built
dynamically while processing its Update packets, as shown
in Figure 4 (a). Upon receiving an Update packet, each cube
registers its flow ID. If the Update packet is not scheduled
to compute at the current cube, the packet is forwarded
to its child based on its routing to the scheduled compute
cube. Therefore, an ARTree is built by recording parent and
children information at each node.

Update Phase. This phase starts in parallel with the
ARTree construction phase. It involves processing of Update
packets, and operand request/response packets as shown in
Figures 4 (a) and (b). While processing Update packets,
operand requests are sent out to the memory from the sched-
uled compute node. When the operand responses arrive, the
arithmetic operations are scheduled to compute the partial
aggregation result.

Gather Phase. Figures 4 (c) and (d) show the packet
processing in Gather Phase to commit Active-Routing flow.
This phase has one forward pass to spread the Gather
requests from the root to leaf nodes, and a backward pass to
reduce the results from leaf nodes to the root node. Once a
node’s subtree finishes Update Phase, it replies to its parent
and deallocate the flow record. A parent receives Gather
responses from all its children to indicate the completion
of their Update Phase. When the root node finishes its
own Update Phase and receives all its children’s Gather
responses, it commits the flow.

C. Memory Access Patterns

Instruction offloading and operand fetching incur over-
head using packet switching due to metadata in the packet
header and packet internal fragmentation. Memory access
patterns of operand fetching can be exploited to amortize the
overhead by offloading multiple operations at a time. Active-
Routing aims to optimize reduction on massive intermedi-
ate results of arithmetic operators, such as sum =

∑n

i=1

*Ai×*Bi, where Ai and Bi store the operand addresses.
Memory access patterns of operands can be regular when
vector A stores array addresses. When it stores addresses of
graph nodes or sparse matrix elements, the access pattern
tends to be irregular. Therefore, the combined memory
access pattern for the two operands can be categorized
into three groups: regular-regular, regular-irregular, and
irregular-irregular. Based on these three categories, we
propose three different ways to leverage data locality.

For regular-regular access pattern, we offload the compu-
tation in cache block granularity as vector processing. While

4



for regular-irregular access pattern, we fetch the irregular
data and send them to the regular data resident location for
processing. The above two methods maximize the locality
benefit and reduce the memory accesses. For irregular-
irregular memory access pattern, we simply fetch single
operand pairs to the scheduled compute node as scalar opera-
tions. Active-Routing can cooperate with previous study [15]
to further optimize irregular-irregular access pattern, which
we leave for future work.

// baseline implementation
global diff = 0.0;
local loc_diff = 0.0;
for (v: v_start to v_end) {
loc_diff += abs(v.next_pagerank - v.pagerank);
v.pagerank = v.next_pagerank;
v.next_pagerank = 0.15 / graph.num_vertices;

}
atomic diff += loc_diff;

// active optimization
global diff = 0.0;
local temp = 0.15 / graph.num_vertices;
for (v: v_start to v_end) {
Update(&v.next_pagerank, &v.pagerank, &diff, abs);
Update(&v.next_pagerank, nil, &v.pagerank, mov);
Update(temp, nil, &v.next_pagerank, const_assign);

}
Gather(&diff, num_threads);

Figure 5. Pseudocode of Thread Worker for Parallel PageRank.

IV. IMPLEMENTATION

In this section, we describe the programming interface
and instruction set architecture (ISA) extension. Then we
introduce the hardware components that work in synergy
to realize Active-Routing, including Network Interface (NI)
support and Active-Routing Engine (ARE). Lastly, we discuss
system integrity considerations and several enhancements in
Active-Routing.

A. Programming Interface and ISA Extension

We provide simple programming interfaces (Update and
Gather) to translate the program semantics into extended
instructions. The ISA extensions are used to communicate
with Network Interface to offload computations to memory
network for Active-Routing processing.
UpdateRR(void *src1, void *src2, void *target, int op);
UpdateRI(void *src1, void *src2[], void *target, int op);
UpdateII(void *src1, void *src2, void *target, int op);
Gather(void *target, int num_threads);

The above Update and Gather APIs are defined to offload
Active-Routing flows. The Update API carries two source
memory addresses of an arithmetic operation. The postfix
RR, RI and II of Update API are used for three memory
access pattern categories, respectively. The op parameter is
the opcode indicating the type of arithmetic and reduction
operation (e.g. floating point multiply-and-accumulate). The
target field in both APIs is the address of the reduced
variable, which is hashed to a unique identification for

each flow. In Gather API, the num_threads parameter
indicates the number of threads working on the flow. It
is used for an implicit barrier at the root of ARTree to
guarantee all the Updates have been initiated. We generalize
the Update API with opcode op to support simple operations
such as assignment. These APIs are translated to extended
instructions by the compiler. During execution, instruction
fields are written to a set of dedicated registers in the
Network Interface (NI). NI can assemble this information
into an Update or a Gather packet and send it to the memory
network.

Figure 5 shows the baseline and Active-Routing imple-
mentations of the thread worker pseudocode of pager-
ank calculation kernel. In the baseline implementation, the
atomic update for diff needs to fetch the pagerank and
next_pagerank values for each vertex in the graph. This
consumes a large amount of bandwidth due to irregular
graph access patterns. It also needs to reduce the diff value
atomically for each thread, which causes high overhead
and limits thread scaling. In contrast, Active-Routing allows
updates of diff near the data location to save bandwidth.
In addition, the Gather requests from all the threads of same
flow are synchronized at the root of ARTree as an implicit
barrier. Then reduction is initiated along the ARTree. Note
that the read-write dependencies between instructions are
enforced as same as normal instructions. The read-write
dependencies can be tracked and resolved by memory con-
trollers similar to read-write requests dependencies handling
with simple extension.

B. Network Interface

Programming interfaces are used in application for Active-
Routing offloading. Compiler takes the API and translates
it into extended instructions. Extended instructions are as-
sembled to packets and offloaded to the memory network
for processing. This functionality can be added to Network
Interface (NI), connecting core and on-chip network, with
marginal change. In NI, we add dedicated registers that can
be written by extended instructions to convey the opcode and
operand information. NI reads these registers to assemble
an Update or a Gather packet and issue it into the memory
network.

C. Active-Routing Engine

The Active-Routing functionalities are implemented in
Active-Routing Engine (ARE) on the HMC logic layer as
shown in Figure 6 (a). It is integrated as an attached module
to the router switch. ARE consists of 1) a packet processing
unit to process and generate packets, 2) a flow table to keep
track of Active-Routing flows, 3) a pool of operand buffers
to store operands, 4) an ALU for computation.

1) Packet Processing Unit: Packet processing unit is
responsible for decoding the Update and Gather packets and
schedule actions correspondingly as shown in Figure 4. It
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Figure 6. Active-Routing Microarchitecture: (a) Engine Implementation in HMC Logic Layer with (b) Flow Table Entry and (c) Operand Buffer Entry.

can generate operand request packets to fetch the data and
Gather response to commit the partial result to its parent.

2) Flow Table: Flow table keeps track of both the struc-
ture and states information of each flow. Figure 6 (b) shows
a flow entry. Each entry in the table is a tree node record
that maintains the structure of the tree by keeping a unique
flow ID, an opcode for computation, and its parent and
children. It also keeps the flow’s state, including the partial
result, the req_count and rep_count, as well as Gflag.
The req_count and rep_count counters are used to keep
the number of issued requests and committed operations.
A Update Phase is considered finished when these two
counters are the same. The Gflag is set by a Gather request
indicating that the flow can start reduction once Update
Phase completes.

3) Operand Buffers: Update packets are processed to
generate request(s) to fetch operands and perform the com-
putation with the response. Operand buffer is used as a
temporary storage for the operands waiting to be processed,
therefore maintaining the pending Update operations. We
make a pool of operand buffers shared by different flows so
as to improve the throughput and reduce the overhead. An
operand buffer entry is reserved before sending out operand
request(s) since co-existing flows can easily cause deadlock
due to wait-and-hold condition especially for two-operand
operations. Figure 6 (c) shows an operand buffer entry,
which keeps the flowID and opcode, two operand fields
and two ready flags to indicate the operand’s availability.
To reduce the operand buffer access time, we use a free and
a ready queue to keep IDs of free and ready operand entries,
respectively, for ease of direct lookup.

4) ALU: A light-weight ALU is implemented in ARE to
compute arithmetic operations. Active-Routing supports var-
ious operations on different data types, including reduction
operations such as sum, xor, and, min, and max, as well
as multiply-accumulate on floating point and integer data.
We plan to generalize our approach and implement more
powerful logics to support complex program accelerations.

5) Putting It All Together: Upon receiving an Update
request packet, ARE processes it in the Packet Processing

Unit. If the corresponding flow has not yet registered in the
flow table, an entry is allocated for the new flow. The flow is
registered and fields are initialized by recording the flow ID
and the packet’s previous hop as parent in the entry. If the
packet is not scheduled for the current cube, it is forwarded
based on the computed route to next hop, which is recorded
in the children flags. Otherwise, the req_count is in-
cremented and an operand buffer entry is allocated from the
free queue. Meanwhile, operand request packets embedding
the operand address and buffer entry ID are also generated. If
all operand buffer entries are busy, the packet processing unit
is stalled until an operand buffer entry is available. When a
response for the operands arrives, the corresponding operand
buffer entry is updated. If operands are ready, the operand
entry ID is pushed to the ready queue for processing. ALU
is directed by the ready queue for computation. After the
computation finishes, the resp_count is incremented and
result is updated in the corresponding flow entry. The
operand buffer is deallocated for reuse by pushing back its
ID to free queue. While processing Gather request packets,
the Gflag of the corresponding flow table entry is set to
initiate Gather Phase after the completion of the Update
Phase of the subtree. If the cube has children cubes, the
packet is replicated and sent to its children. Upon receiving
a Gather response from a child for partial result update, its
corresponding child field is cleared. Note that every time the
result is updated by either computation in current cube or
Gather packet from a child, if Gflag is set and children

flags are cleared, a Gather packet is generated to send the
partial result back to its parent and release the flow table
entry.

D. Integrity Considerations

There are two important design considerations to seam-
lessly integrate Active-Routing into current computer sys-
tems: (1) virtual memory support and (2) cache coherence.

1) Virtual Memory: Since Active-Routing is implemented
by ISA extension, the offload instructions are treated as
extended active loads/stores. Therefore, they can perform
the same virtual to physical address translation as normal
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load/store instructions. With this design principle, we can
avoid overhead for address translation units in the directo-
ries, or memory.

2) Cache Coherence: To offload instructions for Active-
Routing optimization, it should ensure that the offloaded
flow is using the up-to-date data in memory. A naı̈ve way is
allocating uncacheable memory for the data that may be used
in the optimization. However, it may hurt the performance
in other program execution phases which can use the deep
cache hierarchy to exploit locality. To work around with
coherence, offloaded packets are first sent to the directory
based on their address, and query for back-invalidation if
data is cached on-chip similar to [18]. Then it will be issued
to the memory for Active-Routing processing. Since Update
packets are issued in parallel, the back-invalidation overhead
is amortized across massive concurrent packets. We observe
that back-invalidation rarely happens in our experiments.

E. Enhancements in Active-Routing

We observe two critical points that have significant impact
on the Active-Routing performance: (1) the decision for
choosing the root of a tree affects the network congestion,
and (2) the overhead of offloading computations widely
varies with the change in its granularity. To improve Active-
Routing performance further, we address each of these points
as follows.

Since the computations are offloaded from host CPU
through the memory ports, we naturally consider the cubes
that are attached to the four channel ports as root node
candidates. We start with a static approach that we always
assign the root node to be cube 0. In order to balance the
load better in the network, we propose two enhancement
techniques that can consider all four corner cubes as roots
and are able to create multiple trees for one flow. The first
one uses thread ID to interleave the candidate cubes so as
to balance the trees rooted from four corners among multi-
thread applications, named as ART-tid. Since the scheduling
is oblivious to the data location, it can create deep trees
and lead to more hop traversals for Update request packets.
Another enhancement technique takes the operand addresses
into account and sends the Update packet through the port
nearest to its destination. This creates shallow trees with
respect to ART-tid, we name it as ART-addr. Since these
two schemes can create multiple ARTrees for one flow, the
extended HMC memory controllers that manage the trees
are coordinated to merge the subflows at the end of Gather
Phase. On the contrary, Naı̈ve-ART constructs only one
ARTree for each flow.

To reduce offloading overhead and number of memory
accesses, we adapt the offloading granularity, to exploit the
data locality of different memory access patterns discussed
in Section III-C. This optimization is applied to both ART-
tid and ART-addr, whereas Naı̈ve-ART does not consider
granularity, which simply offloads every single operand pair

backprop lud
pagerank

sgemm
spmv

gmean

1.0

0.5

0.0

0.5

1.0

1.5

No
rm

al
ize

d 
Ru

nt
im

e 
Sp

ee
du

p 
(lo

g) Naive-ART ART-tid ART-addr

Figure 7. Runtime Speedup of ART Variants over HMC Baseline.

without considering data locality. This Naı̈ve-ART may ex-
perience contention in operand buffer resources, and network
contention in addition to high offloading overhead due to
static manner for tree construction and simple offloading.

Figure 7 shows the improvement impacts of enhancements
over Naı̈ve-ART. We take the log scale of speedup that
is normalized to HMC conventional system baseline (not
shown). It shows that with naı̈ve way of static tree formation
and offloading, Naı̈ve-ART is worse than HMC baseline, es-
pecially when there is some locality in accesses. In contrast,
by constructing the trees dynamically and exploiting the
memory access patterns, we can achieve better performance.
In the following sections, we only present ART-tid and ART-
addr for detail analysis.

V. METHODOLOGY

A. System Modeling and Configuration

We use an execution-driven simulator McSimA+ [27]
with detailed microarchitecture models as the backend for
cores and cache hierarchy. For HMC memory modeling, we
integrated a cycle-accurate simulator CasHMC [28] with
McSimA+ to replace its memory system. We leveraged
McSimA+’s Pin [29] based front end to implement Active-
Routing instruction extensions. The microarchitectural be-
haviors of Active-Routing were implemented on the crossbar
switch in HMC logic layer.

For power and latency modeling, we use CACTI [30]
for on-chip cache power estimation, assume 5pJ/bit for
each hop in memory network [31], 12 pJ/bit for HMC
memory access [3].We implemented the ARE in verilog and
synthesized it using TSMC 45 nm library. The multiplication
takes the longest time, which is 6.61 ns, and the operand
buffer takes 0.59 ns access time. As we use 1250 MHz for
ARE and pipeline the arithmetic operations, it takes 9 cycles
for each mult and 1 cycle for buffer access. At full load,
ARE’s ALU can compute 1 FLOP/cycle. The area and power
estimation is 0.02 mm2 and 17.8 mW for ALU, 0.026 mm2

and 16.9 mW for operand buffer, 0.05 mm2 and 33.2 mW
for Flow Table.

7



We configured the host CPU as a CMP with on-chip
network and two level cache hierarchy with MESI coherence
protocol. The 16 off-chip HMCs are connected to form a
Dragonfly topology [6]. The system configuration evaluated
in this work is shown in Figure 2 and described in Table I.

Table I
SYSTEM CONFIGURATIONS

Parameter Configuration

CPU

Core 16 OoO cores @ 2GHz
issue/commit width: 4, ROB: 128

L1I/D Cache Private, 32KB, 4 way
L2 Cache S-NUCA 16MB, 16 way, MESI

NoC 4x4 mesh, 4 MC at 4 corners

Memory

DRAM Timing tCK = 0.8 ns, tRAS = 21.6 ns, tRCD = 10.2 ns
tCAS = 9.9 ns, tWR = 8 ns, tRP = 7.7 ns

HMC 4GB/cube, 4 layers
32 vaults, 8 banks/vault

HMC Network

16 cube DragonFly, 4 controllers
Minimal routing, virtual cut-through

16 lanes link, 12.5 Gbps/lane
CrossbarSwitch clock @ 1250 MHz

Flow Table 16 flow entries
Active-Routing Operand Buffer 128 buffer entries

Engine Processing Element 1250 MHz clock frequency
An arithmetic logic unit

B. Workloads

Active-Routing targets applications that have abundant
reduction on data processing operations such as multiply-
accumulate or pure reduction operations over a large mem-
ory footprint. We studied five kernels from several bench-
mark suites. These kernels are widely used in diverse appli-
cation domains such as scientific computing, graph analytics,
language modeling and deep learning. We also develop four
data-intensive microbenchmarks for case study. In order to
support execution with McSimA+ frontend, all the appli-
cations were re-implemented using the Pthread library. We
chose sufficient large input data so as to stress the last level
cache and memory as well as to account for reasonable
simulation time. The working set sizes varied from 80 MB
to 0.5 GB. The memory requirements of these kernels used
in various applications tend to grow significantly larger as
data scales [32]. We summarize the workloads and applied
optimization region as well as input data in Table II.

VI. EVALUATION

In this section, we evaluate ART-tid and ART-addr with
respect to PEI [18], implemented by adding a computation
unit at each vault controller supporting PEIs. It can compute
a dot product of 2 4D vectors in a cycle, one of the
vector operands (either regular or irregular) are brought
to cache and sent to the memory location of the other
half (should be regular) for processing in memory. We
first present performance evaluation followed by power and
energy analysis. Then we show the potential of dynamic
offloading through a case study.

A. Performance

1) Speedup: Figures 8 (a) and (b) show the execution
time speedup of benchmarks and microbenchmarks, respec-
tively. Both ART-tid/addr schemes create multiple trees from
all memory ports for massive flows in the benchmarks.
The results show more than 6% performance improvement
across various applications with respect to PEI except lud.
Specifically, ART-addr improves sgemm, a dense matrix
multiplication kernel upto 7× speedup. In sgemm, almost all
the execution time is spent in matrix multiplication. During
the kernel execution, PEI needs to fetch one of the source
matrices and also update the target matrix, causing read
and write contention on the limited cache, which results in
cache thrashing. In contrast, ART has no contention between
source matrices and target matrix since both source matri-
ces are processed in memory, thereby outperforming PEI
significantly. In geomean, ART-tid and ART-addr improve
performance by 15% and 60% over PEI, respectively. For
lud, PEI performs slightly better than both ART-tid and
ART-addr. In case of spmv, PEI outperforms ART-tid but
performs worse than ART-addr. This is because in these two
applications, the computation distribution is not balanced,
which causes contentions in compute/buffer resources.

Note that the PEI implementation is optimistic since we
have no limit on operand buffers. For spmv, ART-addr is
better than ART-tid due to more balanced work distribution,
which will be discussed in short. In microbenchmarks, the
whole execution is the region of interest for optimization.
Both ART-tid/addr alternatives work well across all mi-
crobenchmarks. Compared with PEI, ART-tid/addr achieves
7×/10× speedup, respectively.

Figure 11 shows a heatmap of spmv for ART-tid and ART-
addr. In the heatmap darker colors are used for denoting
higher number of event occurrences. Each big square depicts
the whole memory network and each small square block
represents one cube in the memory network. In ART-addr,
the work is evenly scheduled in each cube which can have
better resource utilization. While in ART-tid, computations
are centered in a few cubes which leads to compute/operand
resources contention and less parallelism1.

To evaluate scalability, we also run experiments for mac
on 64-cube dragonfly memory network. With the same
problem size, ART-tid and ART-addr achieve 4.6× and 6.3×
speedup compared to PEI on 16-cube memory network,
whereas on 64-cube memory network, ART-tid and ART-
addr outperform PEI for 4.7× and 6.4× improvements,
respectively. As we scale the problem size four times as
the memory capacity scales, ART-tid and ART-addr improve
the performance over PEI by 4.6× and 7.1×, respectively.
When comparing each technique’s performance on the two
different memory networks for the same problem size, PEI

1The operand distribution are different due to the dynamic memory
allocation.
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Table II
WORKLOADS

Workloads Optimization Region Input Data Size

Benchmarks

backprop [33] activation calculation in feedforward pass 2097152 hidden units
lud [33] upper and lower triangular matrix decomposition 4096 matrix dimension

pagerank [2] ranking score calculation web-Google graph [34]
sgemm [35] matrix multiplication 4096x4096 matrix
spmv [35] matrix-vector multiplication loop 4096 matrix dimension and 0.7 sparsity

Microbenchmarks

reduce sum reduction over a sequential vector 6400K dimension
rand reduce sum reduction over random elements 6400K elements

mac multipy-and-accumulate over two sequential vectors two vectors with 6400K dimension
rand mac multiply-and-accumulate over two random element lists two lists with 6400K elements

backprop lud
pagerank

sgemm
spmv

gmean
0

2

4

6

Ru
nt

im
e 

Sp
ee

du
p

PEI ART-tid ART-addr

(a) Benchmarks

reduce

rand_reduce mac

rand_mac
gmean

0

10

20

30

40

50

Ru
nt

im
e 

Sp
ee

du
p

PEI ART-tid ART-addr

(b) Microbenchmarks

Figure 8. Runtime Speedup over PEI.
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Figure 9. Update Roundtrip Latency Break-
down into Request, Stall and Response La-
tency.
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Figure 10. On/Off-chip Data Movement Nor-
malized to PEI.

incurs 2% performance degradation on 64-cube network
compared to its performance on 16-cube memory network.
Whereas both ART-tid and ART-addr have less than 0.1%
performance difference, either better or worse, on the two
memory networks. Since PEI has more on/off chip data
transfer than ART, it is more sensitive to the increased
memory access latency due to higher average network la-
tency in larger scale memory networks. On the contrary,
ART benefits from both memory parallelism and network
concurrency, therefore it tends to scale better for larger
memory networks.

2) Update Offloading Round-trip Latency: In Figure 9,
round-trip latency is broken into request, stall and response
to understand the contribution of different communication
components for Update offloading. As expected, the total
latency is inversely proportional to the performance shown
in Figure 8. In general, ART-tid and ART-addr dynamically

distribute the Updates across all available ports for tree con-
struction. The ART-tid/addr schemes can balance the load
evenly and utilize the memory network resources more ef-
ficiently. Compared to ART-tid, ART-addr has lower round-
trip latency across all benchmarks. ART-tid constructs trees
by interleaving memory ports using thread IDs. Therefore,
the tree root is not necessarily close to the directory where
Update packets check for coherence. In contrast, ART-addr
distributes Updates based on addresses, which makes the
tree root physically close to directory, thereby incurring less
request latency. The stalls are mostly due to queuing in HMC
controllers.

3) Data Movement: We evaluate data movement as the
data size transferred between the host processor and memory
network. The data movement breakdowns for normal data
and active data transfer are shown in Figure 10. For most
applications, ART-tid/addr can reduce the memory requests
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Figure 11. SPMV Compute Point and Operand Distribution.

fetching the data, mostly source operands, compared to PEI.
In pagerank, the region of interest for optimization is the
code segment that has reduction on large amounts of data
processing tasks. In the benchmarks, only parts of the whole
parallel phase that we evaluate are our optimization targets.
The other phases still require data movement. Another
overhead comes from massive fine-grained offloading in
this benchmark due to the irregular memory access pattern.
Further preprocessing on the data [15] can solve this problem
to gain performance and reduce data movement further.

In the microbenchmarks, the whole parallel phase can be
optimized and hence the data movement decreases signifi-
cantly. In reduce, the majority of its execution time is spent
on summing up all the elements of a large array as it accesses
the array elements sequentially. Similarly, mac operates
multiply-and-accumulate over two large vectors. Both of
them exhibit very good spatial locality in their memory ac-
cesses, which is exploited in cache-block grained offloading
for vector processing. However in PEI, it needs to bring
part of the data on chip and offload it with the instruction,
causing data movements. For rand reduce and rand mac,
ART-tid/addr have more data movements compared to the
sequential accesses due to offloading overhead. Since PEI
still needs to bring the data for random multiplication on
chip before atomic write, it incurs more data movement.

B. Power and Energy

1) Power Consumption: We present the power consump-
tion breakdowns into cache, memory and memory network
in Figure 12. We observe that ART-tid/addr consumes simi-
lar memory power and less network power than PEI except
for pagerank. In ART-tid/addr, data is fetched from memory
and communicated in the network. However in PEI, part of
the operands need to be brought across the network to on-
chip cache and be sent with the offloaded instruction, leading
to cache contention even cache thrashing. For example,

sgemm has cache contention between reading of large source
matrix and writing to target matrix. The cache thrashing
leads to more memory accesses. As a result, PEI and ART
have similar memory access intensities. For regular memory
accesses in terms of network power, ART feeds the data in
the network with minimum routing while PEI brings data
all the way to CPU, thus PEI consumes more power. One
exception is pagerank, which has irregular memory access
patterns. ART offload computation flows in single operand
granularity, causing high overhead in offloaded packets and
operand packets, thus consuming more network power.

Microbenchmark mac has similar power characteristics as
the benchmarks behaving regular memory access patterns.
For reduce, ART-tid/addr can massively process the reduc-
tion near-data in memory cubes without moving data around,
which leads to more intensive memory accesses and more
offloading. For irregular memory access patterns such as
rand reduce and rand mac, PEI exhibits no reuse of the data
and can only optimize atomic updates, leading to intensive
memory accesses which consume more power.

2) Energy Consumption: Figure 13 shows the energy
consumption for cache, memory and memory network.
ART-tid/addr reduces the energy consumption across all
the benchmarks with regular memory access patterns and
microbenchmarks. For applications that have irregular access
patterns such as pagerank, the main contribution is from
network energy that has high overhead due to fine-grained
offloading. For sgemm and microbenchmarks, energy con-
sumption is reduced dramatically due to significant running
time speedup. We gain enormous benefit as most parts of
these applications can be optimized by Active-Routing.

3) Energy-Delay Product: Figure 14 shows the normal-
ized energy-delay product (EDP) over PEI in logarithmic
scale to show the energy efficiency. We observe that ART-
tid/addr has lower EDP for all applications except for spmv
with ART-tid. The reductions in execution time as well as
energy consumption contribute jointly to EDP reduction,
achieving significant energy efficiency improvements. In
spmv with ART-tid, the imbalanced work distribution leads
to worse execution time. Since the energy saving is offset
by the performance degradation, ART-tid on spmv has lower
EDP. To summarize, ART-tid and ART-addr reduce the EDP
by 80% on average compared to PEI.

C. Dynamic Offloading: A Case Study

In this section, with the help of an example we show that
the performance can be further improved using a runtime
knob. The runtime knob dynamically decides whether to
offload computations (Updates) on the basis of memory
access and communications patterns to achieve more perfor-
mance gains. Execution phases that exhibit good locality of
data accesses experience performance benefits by exploiting
cache hits when scheduled on the host processor. In lud,
it decomposes a matrix into upper and lower triangular
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Figure 12. Normalized Power Consumption
over PEI.
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Figure 13. Normalized Energy Consumption
over PEI.
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Figure 14. Logarithmic Scale of Normalized
Energy-Delay Product over PEI.
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Figure 15. LUD Phase Analysis and Dynamic Offloading

matrices. Computations for these two matrices can be broken
into two different phases. The first phase is for computations
of the upper triangular matrix and the other is for those of
the lower triangular matrix and they are executed iteratively.
These two phases have different locality of data accesses.
The second phase has a good data locality since its data
access pattern is row-major order, whereas the data access
pattern of the first phase is in column-major order.

For such a program behavior, the best execution model
is to use Active-Routing for the first phase and process the
second phase in the host processor. We analyze lud’s phase
behaviors as shown in Figure 15. In the ARTtid that always
offloads computations to memory regardless of data locality,
the number of cycles for first and second phases in each
iteration dramatically increases and decreases. However,
when we run ARTtid-adaptive in which computations of

the first phase are offloaded to the memory and that of the
second phase is processed in the host processor, we achieve
2× speedup.

VII. ADDITIONAL RELATED WORK

Near-Data Processing. Recently, NDP architectures is
becoming an active research area in architecture commu-
nity [18], [9], [19], [36], [11], [10], [12], [37]. Ahn et al.
proposed Tesseract [9], a programmable PIM accelerator for
large-scale graph processing. Nair et al. [36], [10] proposed
Active Memory Cube (AMC) by leveraging HMC to place
vector processing units in the logic layer. AMC suffers from
delays due to instruction pre-loading as well as delay and
energy overhead of its complex interconnection network.
Most recently Fujiki et al. [38] propose a programmable in-
memory processor architecture, and data-parallel program-
ming framework using non-volatile memory. Mondrian [15]
takes an algorithm-hardware co-design approach to sequence
irregular accesses for better locality. Recent study [39] ana-
lyzed Google workloads and discovered the data movement
as the bottleneck for performance and energy efficiency,
which is also the problem Active-Routing tries to solve.

Processing in the Interconnection Network. Previous
research [20], [21], [22] has encouraged interconnection
networks to offer more functionalities other than just routing
packets. Active Message [20] embeds the function pointer
and arguments across the network to perform tasks in
remote compute nodes. Pfister et al. [21] and Ma [40]
proposed mechanisms to combine messages so as to reduce
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network traffic. Recently, IncBricks [22] implements an in-
network caching middlebox for key-value acceleration in
router switches. Several studies [23], [24], [25] proposed
mechanisms to optimize shared value update or reduction
in the network. The NYU Ultracomputer [23] implemented
adder in network switches to coalesce the atomic fetch-
and-update for the same target address along their way to
memory. Panda [24] and Chen et al. [25] describe similar
mechanisms that provide network interface functionality
as well as hardware support for MPI collective reduction
communication in a static manner. All of these mechanisms
present varied solutions to support data processing in the
network but still suffer the burden of data movement from
memory to CPU, while Active-Routing solves this issue.

VIII. CONCLUSION

We propose Active-Routing, an in-network compute ar-
chitecture, to accelerate reduction on data processing oper-
ations in data-intensive applications for near-data process-
ing. Active-Routing is implemented as a novel three-phase
processing schedule, which offloads the computation near
data in the memory network for execution and aggregates
the results along their routing path. We categorize memory
access patterns of compute kernels of interest and offload
the computations in various granularities by exploiting their
locality characteristics to reduce offloading overhead. Com-
pared to the state-of-the-art PIM architecture, Active-Routing
can achieve up to 7× speedup with a geometric mean of 60%
performance improvement and reduce energy-delay product
by 80% on average, showing promising potential for in-
network computing and data-flow processing.
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