An Endeavor to Industrialize Hardware Fuzzing:
Automating NoC Verification in UVM

Ruiyang Ma', Huatao Zhao?, Jiayi Huang?®, Shijian Zhang?, and Guojie Luo'”
School of Computer Science, Peking University, Beijing, China
2Computing Technology Lab, Alibaba DAMO Academy, Hangzhou, China
3Microelectronics Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China

Abstract—We endeavor to make hardware fuzzing compatible
with the standard IC development process and apply that to NoC
verification in a real-world industrial environment. We system-
atically employ fuzzing throughout the entire NoC verification
process, including router verification, network verification, and
stress testing. As a case study, we apply our approach to an open-
source NoC component in OpenPiton. Remarkably, our fuzzing
methods automatically achieved complete code and functional
coverage in the router and mesh network, and effectively detect
injected starvation bugs. The evaluation results clearly demon-
strate the practicability of our fuzzing approach to considerably
reduce the manpower required for test case generation compared
with traditional NoC verification.

Index Terms—Design Verification, Hardware Fuzzing, Network
on Chip, Automatic Test Generation

I. INTRODUCTION

Network-on-Chip (NoC) has surfaced as a crucial intercon-
nection strategy in modern digital systems, thereby demanding
meticulous verification. Due to its multiple nodes and high
concurrency, verifying a NoC is labor-intensive, making it
complex to generate a multitude of test cases.

Recently, hardware fuzzing has emerged as a potentially
powerful automated approach for hardware verification. How-
ever, when we attempted to apply these fuzzing techniques to
our internally developed NoC design, we found that they were
incompatible with the industrial verification of NoC. Specifi-
cally, these techniques often target novel coverage metrics [1],
[2], which are not the primary concern of industrial test plans.
Moreover, they rely on open-source hardware verification
workflows that offer limited support for SystemVerilog and
UVM, therefore markedly deviate from traditional industrial
verification environments [3], [4].

In this study, we investigated (i) how to integrate fuzzing
with the UVM framework, (ii) how to apply fuzzing to a
multi-port NoC design, and (iii) how to employ fuzzing to
automate the completion of the test plan across all stages of
NoC verification.

This work was partly supported by the Alibaba Innovative Research
(AIR) Program, the National Natural Science Foundation of China (Grant
No. 62090021), and the National Key R&D Program of China (Grant No.
2022YFB4500500).

E-mail: ruiyang@stu.pku.edu.cn, gluo@pku.edu.cn, hjy @hkust-gz.edu.cn,
{zhaohuatao.zht, zsj269889} @alibaba-inc.com

*Corresponding author: Guojie Luo.

AFL Fuzzer Controller UVM Env
— | Testfile 900 . Packets
K () Cov Info Sequences Agents I.l-l
L 7
infout
3 Bin>TR Seq Virtual o —)=
Coverage Fuzzing :Sequence buTt 5 E
DB Decoder uuouog

Fig. 1: UVM fuzzing framework for NoC verification.

II. METHOD
A. UVM Fuzzing Framework

Figure 1 shows the fuzzing framework. The NoC UVM
environment is structured with individual agents for each NoC
input port. The virtual sequence is tasked with allocating
sequences to each agent [5]. We employ AFL [6] as our
fuzzing engine, which mutates and generates binary-format
input test files. A controller is set up to manage the entire
fuzzing flow, facilitating communication with AFL. When a
new binary test input is received, the fuzzing decoder translates
that into a valid UVM virtual sequence in accordance with the
user-defined hardware fuzzing grammar. Then the simulation
is launched and the coverage data is sent back to AFL to guide
subsequent mutation.

B. Multi-Port Fuzzing Grammar Design

To generate valid NoC input, we first translate AFL-
generated binary data into NoC instructions. Then we must
devise a strategy to allocate these instructions across different
ports of NoC.

We adopt a compact binary representation for our grammar,
with a byte as the basic unit. An NoC Instruction consists of
1) 16-bit destination address field, 2) 8-bit packet length field,
and 3) 8-bit free flag field. The free flag regulate the packet
injection rate by keeping the input port active or idle. Binary
test files are mapped to each instruction field, aligning them
with their respective valid definition domains.

After the instructions are generated, they are sequentially
assigned to the input queues of different ports following a
fixed cyclical order. For instance, for a 3 x 3 Mesh Network,
each generated instruction is systematically sent to the local
input ports of routers Ry to Rg.

1

X [Random]{ Analyse Write Test Plan i

' Testing Report Cases Finished |
Human 1

N e o e e e e e e o e 2 /I

| @
Code | Functional Functional .
Vulnerabilities
Coverage| Coverage Coverage

[Llne/Bra_nch J {CoverGroupJ
Coverpoints

> Threshold |

—~

Fuzzer : W)
Fuzzing Engine 100%

1
1
1
Find Bug|
1

Fig. 2: Comparing manual testing and fuzzing in NoC verification.

C. NoC Verification with Fuzzing

The verification plan for NoC can be divided into three
parts, which is depicted in Figure 2.

1) Router Verification: Achieving full code and functional
coverage of the router is essential in this stage. Unfortu-
nately, random testing usually fails to reach numerous complex
branches and functional points while writing test cases man-
ually is both time-consuming and labor-intensive. Therefore,
we utilize both code and functional coverage as feedback for
fuzzing, aiming to achieve coverage closure automatically.

2) Network Verification: Once achieving a thorough ver-
ification of individual routers, they are interconnected for
network-level testing. Given that full code coverage for each
router has been achieved in the preliminary stage, it is not
included in the test plan for the network. At this stage, our
focus is on the network-level functional coverpoints, which
are leveraged as feedback in the process of hardware fuzzing.

3) Stress testing: This stage involves high-pressure, long-
duration testing aimed at uncovering hidden vulnerabilities.
Generally, a timeout threshold is set. If a packet is not received
within this threshold, a bug is triggered. Using random testing
is difficult to find out overtime bugs. Therefore, we employ the
packet waiting time as feedback for fuzzing. Mutations could
progressively generate specific input sequences that lead to
timeouts, thereby rapidly find the bug.

III. EVALUATION

In the evaluation part, we address the question: Can fuzzing
be utilized to reduce human or computational costs in NoC
UVM verification? We employ the NoC component from
OpenPiton [7] as our DUT and utilize Synopsys VCS [8] to
simulate the testbench. Previous hardware fuzzing works [1]-
[4] are incompatible with our NoC UVM environment. Our
objective is to adopt the fuzzing methodology into industrial
verification workflows, so we benchmark against random test-
ing, which is commonly used at the early stage of verification
and requires no human intervention. If random testing fails to
achieve coverage closure in the test plan, but fuzzing succeeds,
then the subsequent human effort involved in writing test cases
is effectively saved.

In addition to line and branch coverage for the router, we
select several complex functional covergroups of the router

TABLE I: Performance comparison between Fuzz and Random.

Verification Target - Fuzz - Random
Time (h) | Cov (%) | Time (h) | Cov (%)

Line 2.6 max 120 96.7
Router Branch 24 max 120 94.8
Covergroupl 3.3 max 120 98.8
Covergroup?2 10.8 max 23.6 max
Mesh Covergroupl 9.2 max 120 99.8
Covergroup2 6.8 max 120 89.7
Starvation Detection 0.29 max 24 73.3

and the 3 x 3 mesh network as fuzzing targets. We initiate
a separate fuzzing task for each code coverage metric and
functional covergroup. For vulnerability detection, we inject
a starvation bug into the arbitration logic of the router. We
set the overtime threshold of 1024 clock cycles. Each value
of packet waiting time can also be viewed as a coverpoint
in the implementation. To enhance the efficiency of AFL
evolutionary algorithm, we use fuzzing seeds of shorter length.
We configure 10 random initial seeds, each 40 bytes long for
the router, and 72 bytes long for the 3 x 3 mesh network
(corresponding to 2 instructions per input port). For starvation
detection, we set the seed length to 100 bytes. We conduct
each experiment 10 times and compute the average.

A comparison of the performance of fuzzing and random
testing is shown in Table I. For verification tasks challenging
for random testing, fuzzing demonstrates impressive perfor-
mance and achieves coverage closure.

IV. CONCLUSION

This paper explores the use of fuzzing to automate the
industrial NoC verification process. We developed a hardware
fuzzing framework that integrates AFL into NoC UVM test-
bench. By designing the hardware fuzzing grammar for NoC
and using verification targets at all stages of the NoC test
plan as fuzzing feedback, we demonstrates the superior ability
of fuzzing to generate high-quality test inputs. Moreover, it
notably reduces the human labor expenditure required for
writing test cases. This research indicates the practicality of
industrial-grade hardware fuzzing method and its potential
applicability to the industrial test plan of the DUT.

REFERENCES

[1] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of RTL on FPGAs,” in ICCAD, 2018,
pp. 1-8.
J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find CPU bugs,” in SSP, 2021, pp. 1286-1303.
T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in USENIX Security Sym-
posium, 2022, pp. 3237-3254.
B. Fajardo, K. Laeufer, J. Bachrach, and K. Sen, “RTLFUZZLAB: Build-
ing a modular open-source hardware fuzzing framework,” in WOSET.
https://woset-workshop. github.io/WOSET202 1. html## article-10, 2021.
[5] A. S. Eissa, M. A. Ibrahem, M. A. Elmohr, Y. Zamzam, A. El-Yamany,
S. El-Ashry, M. Khamis, and A. Shalaby, “A reusable verification envi-
ronment for NoC platforms using UVM,” in ICST, 2017, pp. 239-242.
[6] american fuzzy lop, “http://lcamtuf.coredump.cx/afl/,” 2018.
[7] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang et al., “OpenPiton: An open
source manycore research framework,” ACM SIGPLAN Notices, pp. 217—
232, 2016.
VCS, “https://www.synopsys.com/verification/simulation/vcs.html.”

[2

—
(98]
—_ =

[4

—_

[8

—

