
MoC-System: Efficient Fault Tolerance for Sparse
Mixture-of-Experts Model Training

Weilin Cai
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

wcai738@connect.hkust-gz.edu.cn

Le Qin
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

lqin674@connect.hkust-gz.edu.cn

Jiayi Huang∗
The Hong Kong University of Science

and Technology (Guangzhou)
Guangzhou, China

hjy@hkust-gz.edu.cn

Abstract
As large language models continue to scale up, distributed
training systems have expanded beyond 10k nodes, inten-
sifying the importance of fault tolerance. Checkpoint has
emerged as the predominant fault tolerance strategy, with
extensive studies dedicated to optimizing its efficiency. How-
ever, the advent of the sparse Mixture-of-Experts (MoE)
model presents new challenges due to the substantial in-
crease in model size, despite comparable computational de-
mands to dense models.

In this work, we propose the Mixture-of-Checkpoint Sys-
tem (MoC-System) to orchestrate the vast array of check-
point shards produced in distributed training systems. MoC-
System features a novel Partial Experts Checkpointing (PEC)
mechanism, an algorithm-system co-design that strategically
saves a selected subset of experts, effectively reducing the
MoE checkpoint size to levels comparable with dense mod-
els. Incorporating hybrid parallel strategies, MoC-System
involves fully sharded checkpointing strategies to evenly dis-
tribute the workload across distributed ranks. Furthermore,
MoC-System introduces a two-level checkpointing manage-
ment method that asynchronously handles in-memory snap-
shots and persistence processes.
We build MoC-System upon the Megatron-DeepSpeed

framework, achieving up to a 98.9% reduction in overhead for
each checkpointing process compared to the original method,
duringMoEmodel trainingwith ZeRO-2 data parallelism and
expert parallelism. Additionally, extensive empirical analy-
ses substantiate that our methods enhance efficiency while

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716006

maintaining comparable model accuracy, even achieving an
average accuracy increase of 1.08% on downstream tasks.

CCS Concepts: • Computer systems organization→ Re-
liability.

Keywords: Fault Tolerance, Checkpoint, Mixture of Experts,
Large Language Models, Training

ACM Reference Format:
Weilin Cai, Le Qin, and Jiayi Huang. 2025. MoC-System: Efficient
Fault Tolerance for Sparse Mixture-of-Experts Model Training. In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS ’25), March 30–April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3676641.3716006

1 Introduction
Transformer-based large language models (LLMs), which
scale to billions or even trillions of parameters, have emerged
as the most trending topic in AI research due to their im-
pressive capabilities [1, 5, 9, 48, 67, 74, 75]. Recently, the
sparsely-gated mixture-of-experts (MoE) has become the
preferred methodology to increase parameter counts and
enhance the model quality of LLMs without a proportional
increase in computational requirements [7, 25, 56, 58]. To
facilitate the training of MoE models and their deployment
across expansive computing clusters, distributed training
systems have been refined to incorporate expert parallelism
(EP) [6, 18, 20, 23, 31, 61] alongside established frameworks
of data parallelism (DP) [52, 55] and model parallelism [22,
28, 32, 44, 45, 60, 62]. With the escalation in the number
of deployed computing devices and the incidence of faults
[15, 19, 26, 37, 77], ensuring fault tolerance has become a
critical component of AI system infrastructure.
Although numerous studies have effectively addressed

fault tolerance for dense (non-MoE) models through periodi-
cal checkpoints [26, 37, 42, 47, 73, 77], the distinctive charac-
teristics of MoE models necessitate specialized strategies to
assure their reliable and efficient fault-tolerant training. As
MoE models scale to unprecedented sizes, the primary chal-
lenge in fault tolerance is the substantial increase in check-
point size, which poses a storage burden that distributed
filesystems struggle to handle efficiently [16, 51, 59]. Even

https://doi.org/10.1145/3676641.3716006
https://doi.org/10.1145/3676641.3716006
https://doi.org/10.1145/3676641.3716006


ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

with prevailing sharded and asynchronous checkpointing
strategies [8, 38, 42, 47, 70], the enlarged checkpointing du-
ration cannot be fully overlapped with the training process,
yielding additional costs to the total training time.
Pioneering efficient fault tolerance for MoE model train-

ing, we introduce the Mixture-of-Checkpoint System (MoC-
System). The name “Mixture-of-Checkpoint” reflects the sys-
tem’s design to orchestrate the vast array of checkpoint
shards produced during distributed training. MoC-System
features an innovative Partial Experts Checkpointing (PEC)
mechanism, an algorithm-system co-design that reduces the
checkpoint size for MoE models by selectively saving only
a subset of experts. Specifically, PEC selectively saves 𝐾𝑝𝑒𝑐

experts per MoE layer during each checkpointing, while fully
saving the non-expert parameters of the model.
It is inspired by observations in MoE model fine-tuning,

where updating only the non-expert parameters can achieve
the same accuracy as updating all parameters while updat-
ing only the expert parameters leads to a drastic reduction
in model accuracy [83]. This is believed to be due to the
sparsity of the MoE structure, which makes it less sensitive
to a limited number of updates, as supported by observa-
tions that MoE models generally require larger volumes of
pre-training data [3, 18, 78]. Building on existing algorithm-
system co-design efforts that leverage LLMs’ features to
optimize computation [13, 35], communication [21, 51, 71],
and memory [24, 79], we innovatively apply the co-design
method to fault tolerance.
Compared to saving the states of all model parameters,

using PEC results in a loss of updates to the expert parame-
ters during checkpointing, potentially compromising model
accuracy upon recovery. To quantitatively evaluate the im-
pact of PEC on accuracy, we propose the Proportion of Lost
Tokens (PLT) metric, which measures the update loss caused
by PEC, as parameter updates are posed by input tokens.
Our empirical results reveal an inverse relationship between
model accuracy and PLT, yet we find that the model accu-
racy maintains akin to the non-fault case when PLT does
not exceed 3.75%.

Building on the efficacy of PEC, MoC-System further intro-
duces the fully sharded checkpointing strategies to distrib-
ute workload evenly across distributed ranks, while existing
sharding efforts lack specific optimizations for scenarios
involving expert parallelism. Furthermore, MoC-System in-
volves a two-level checkpointing management method that
asynchronously controls in-memory snapshot and storage
persist processes, with adaptive configuration of hyperpa-
rameters for various scenarios. The refinement of PEC into
snapshot-PEC and persist-PEC not only leverages the higher
bandwidth of memory and the reliability of distributed stor-
age but also reduces PLT to maintain model accuracy.

We implement the MoC-System and conduct experiments
upon the Megatron-DeepSpeed [40, 51, 62], which is an ac-
claimed open-source framework supporting the predominant

MoE training strategy of ZeRO-2 DP [52] and EP. Our ex-
perimental results from training the GPT-350M-16E model
demonstrate that the PEC approach achieves a 57.7% re-
duction in the total checkpoint size. Furthermore, recovery
from PEC checkpoints maintains comparable validation loss
during pre-training and even achieves an average accuracy
increase of 1.08% on downstream tasks. Additionally, with
all optimizations applied, MoC-System reduces overhead for
each checkpointing process by up to 98.9% compared to the
original method, and speeds up each training iteration with
checkpointing by up to 5.12×.
In summary, our contributions are:

• We introduce theMixture-of-Checkpoint System (MoC-
System) to achieve efficient fault tolerance for MoE
model training, which integrates multiple strategies
to decompose and manage checkpoint shards.

• We propose a novel Partial Experts Checkpointing
(PEC) mechanism, reducing the checkpoint size by
selectively saving a subset of experts. Furthermore, we
propose the Proportion of Lost Tokens (PLT) metric
to quantitatively assess the accuracy impact of PEC.

• We implement the fully sharded checkpointing strate-
gies to distribute workload evenly across distributed
ranks, which are applicable to both PEC and conven-
tional checkpointing scenarios.

• We design a two-level checkpointing management
method that asynchronously handles snapshot and
persist processes, maximizing the benefits of PEC.

• We conduct extensive experiments to substantiate the
superior performance of our approach in enhancing
fault tolerance efficiency without sacrificing model
accuracy. Additionally, we extend our experiments to
examine the impact of varying checkpointed model
states, observing that a limited update loss can even
improve the accuracy of downstream tasks.

2 Background & Related Work
2.1 Sparse Mixture-of-Experts (MoE) Models
The sparse Mixture-of-Experts (MoE) layer [58], consists of
multiple feed-forward networks (FFNs), termed “experts”,
and a trainable gating network for selectively activating a
subset of these experts. Formally, with 𝑁 expert networks
{𝐸𝑖 }𝑁1 , gating network𝐺 , and input 𝑥 , theMoE layer’s output
can be formulated as:

𝑀𝑜𝐸 (𝑥) =
𝑁∑︁
𝑖=1

𝐺 (𝑥)𝑖𝐸𝑖 (𝑥) (1)

The common practices in existing MoE research use the
noisy top-k softmax gating network to select the top-ranked
experts for the computation, formulated as

𝐺 (𝑥) = 𝑇𝑜𝑝𝐾 (𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 (𝑥) + 𝜖)) (2)



MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Atten

0

FFN

0

Atten

1

Expert

1-0

Rank

0

Atten

0

FFN

0

Atten

1

Expert

1-1

Rank

1

Atten

0

FFN

0

Atten

1

Expert

1-2

Rank

2

…

…

…

(a) Model Parameters

FFN

0

Atten

1

Expert

1-0

Rank

0

Atten

0

FFN

0

Atten

1

Expert

1-1

Rank

1

Atten

0

FFN

0

Atten

1

Expert

1-2

Rank

2

…

…

…Atten

0

FFN

0

Atten

1

Atten

0

Atten

1

Atten

0

FFN

0

Atten

1

FFN

0

(b) Optimizer States

Figure 1.An illustration of themodel states, includingmodel
parameters (a) and optimizer states (b), across three ranks in
distributed training. The training utilizes the hybrid parallel
strategy of ZeRO-2 DP + EP, configured with the parallel de-
gree of DP = 3 and EP = 3. The non-expert parts are depicted
in green, while the expert parts are depicted in yellow, with
varying shades denoting different experts within the same
MoE layer. The combination of white and green in the non-
expert modules in (b) illustrates the partitioning of states
across ranks through ZeRO-2 DP. “Atten0” and “FFN0” rep-
resent Attention and FFN sublayers in the 0𝑡ℎ transformer
layer, while “Atten1” and the MoE layer, including “Expert(1-
0, 1-1, 1-2)”, are in the 1𝑡ℎ transformer layer.

where 𝑓 (·) denotes the gating linear transformation and 𝜖 is
the Gaussian noise. Leveraging the sparse activations yielded
by 𝐺 (𝑥), this approach facilitates a substantial augmenta-
tion of model parameters without causing a proportional
increase in computational cost. Employing the MoE layer
to substitute the selected FFN layer in Transformer-based
LLMs engenders a significant rise in checkpoint data volume
due to the multiplicity of FFN experts, thereby presenting
challenges to efficient checkpointing for fault tolerance.

2.2 Distributed Training of MoE Models
The adoption of MoE in LLMs introduces new challenges to
existing training and inference systems, due to its inherently
sparse and dynamic computational workload. GShard [31]
pioneers the parallel strategy of Expert Parallelism (EP) by fa-
cilitating parallel gating and expert computation. Specifically,
EP assigns distinct experts to each distributed computing
device such as GPU and TPU, and passes input tokens to the
corresponding experts via All-to-All communication. Follow-
ing this, EP has ascended as a pivotal strategy, enabling the
efficient scaling of MoE model training [18, 23, 51, 61].
As depicted in Figure 1(a), EP can be viewed as an aug-

mentation of Data Parallelism (DP) [52, 53, 55], where each
expert within an MoE layer is allocated to a distinct DP rank
(e.g., “Expert1-0” on “Rank0” and “Expert1-1” on “Rank1”),
while all non-expert layers (e.g., “Atten0”, “FFN0”, and “At-
ten1”) are replicated across DP ranks. Moreover, the synergy
of EP with other parallel strategies, such as Tensor Paral-
lelism (TP) [45, 60, 62], Pipeline Parallelism (PP) [22, 44, 49],
has been explored to enhance the scalability and efficiency
of MoE model training in expansive distributed settings

10 20 30 20 30 𝐼𝑡𝑜𝑡𝑎𝑙

ckpt

1

ckpt

2

Fault𝐼𝑐𝑘𝑝𝑡

Time
O𝑠𝑎𝑣𝑒 O𝑙𝑜𝑠𝑡 O𝑟𝑒𝑠𝑡𝑎𝑟𝑡

ckpt

2

Load the latest complete 
checkpoint for recovery

Checkpoint

Optimizer

States

Expert   
Non-Expert

Parameters

Optimizer

States

Figure 2. An illustration of fault tolerance in model training
through checkpoint mechanism. The checkpointing inter-
val 𝐼𝑐𝑘𝑝𝑡 is set to 10 iterations. A fault arises following the
30th iteration, before the completion of the third checkpoint.
Therefore, the most recent completed checkpoint (ckpt2) is
loaded to recover the training progress. The composition of
a checkpoint is depicted on the left, with the size of each
component reflecting its data volume, using the GPT-350M-
16E model as an example.

[18, 21, 23, 61, 76, 81]. From the checkpoint perspective, a
notable distinction between EP and other parallelism is EP’s
flexibility in distributing diverse parameters across DP ranks.
In contrast, TP and PP maintain parameters replicated across
all DP ranks, limiting their adaptability within each DP rank.
In this work, we primarily focus on distributed training

with the hybrid parallel strategy of ZeRO-2 DP + EP (notably,
ZeRO-1 is analogous to ZeRO-2 from the view of check-
pointing [52]), which has emerged as the predominant ap-
proach for training MoE models [51, 66, 76]. This approach is
highlighted for its accessibility and efficiency, supported by
Megatron-DeepSpeed [40, 62], an acclaimed open-source dis-
tributed training framework. Moreover, extensive practical
experience with large-scale distributed systems has demon-
strated its superior performance, minimizing communication
overhead while remaining memory-efficient [7, 12, 51, 52].
Additionally, our proposed checkpointing techniques can
be seamlessly extended to other hybrid parallel strategies,
encompassing TP and PP, as they can be viewed as the mod-
ularity of each DP rank.

2.3 Fault-tolerant Checkpointing for Distributed
Training System

Checkpoint serves as a critical mechanism for augmenting
fault tolerance in distributed training systems by facilitating
the periodic preservation and recovery of model states dur-
ing training [26, 27, 30, 42, 77]. As illustrated in Figure 2, the
saved model states at each checkpoint comprise learnable
model parameters for the expert part (12% of the total vol-
ume) and that for the non-expert part (2%), optimizer states
for the expert part (74%) and that for the non-expert part
(12%), along with other crucial states (less than 1%), such as
epoch/iteration numbers and Random Number Generator
states. The checkpoint ensures that training progress is not
lost in unexpected faults and can be recovered after a restart.
However, the checkpointing process incurs significant

data transfer and storage overhead, alongside additional over-
head in the event of a fault. The total overhead introduced by



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

Rank-0

Rank-1

Node-0

CPU-Memory

GPU Parameters

GPU Parameters

Rank-2

Rank-3

Node-1

CPU-Memory

GPU Parameters

GPU Parameters

Snapshot

Distributed

Persistent

Storage

Persist

Shard-1

Parameters
PCIe

PCIe

PCIe

PCIe

F&B UTrain

Checkpoint

F&B US F&B U F&B U F&B U

Snapshot Persist

Time

Network

Shard-0

Shard-1

Shard-2Shard-2

Shard-3Shard-3

Shard-3Shard-3
Shard-2Shard-2
Shard-1
Shard-0

Figure 3. The top half part illustrates the two-phase check-
pointingworkflow (GPU-to-CPU snapshot + CPU-to-Storage
persist) during a distributed training. The training employs
4-degree DP across two nodes, each equipped with two GPUs.
Data-parallel sharding is utilized to minimize the volume
of data saved per DP rank. The bottom half part presents a
timeline for asynchronous checkpointing, where “F&B” de-
notes the forward and backward passes of an iteration, “U”
denotes a weight update, “S” denotes a checkpoint stall.

fault tolerance with checkpoint during the entire model train-
ing, denoted as 𝑂𝑐𝑘𝑝𝑡 , can be quantified by aggregating the
overhead of a checkpointing process (saving model states)
𝑂𝑠𝑎𝑣𝑒 during normal training, the overhead of system/task
restart 𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 and lost training progress 𝑂𝑙𝑜𝑠𝑡 when a fault
occurs, as illustrated in Figure 2. It is formulated as:

𝑂𝑐𝑘𝑝𝑡 = 𝑂𝑠𝑎𝑣𝑒

𝐼𝑡𝑜𝑡𝑎𝑙

𝐼𝑐𝑘𝑝𝑡
+

∑︁𝑁𝑓 𝑎𝑢𝑙𝑡

𝑖=1
(𝑂𝑖

𝑟𝑒𝑠𝑡𝑎𝑟𝑡 +𝑂𝑖
𝑙𝑜𝑠𝑡

) (3)

where 𝐼𝑡𝑜𝑡𝑎𝑙 represents the total number of iterations in train-
ing and 𝐼𝑐𝑘𝑝𝑡 denotes the iteration interval of checkpoint-
ing. Each fault occurrence, totaling 𝑁𝑓 𝑎𝑢𝑙𝑡 , contributes to the
overhead, with𝑂𝑙𝑜𝑠𝑡 being contingent on 𝐼𝑐𝑘𝑝𝑡 and averaging
𝐼𝑐𝑘𝑝𝑡

2 , and 𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 remaining relatively constant. Therefore,
the overhead of fault tolerance be represented roughly as
the following formulation:

𝑂𝑐𝑘𝑝𝑡 ≈ 𝑂𝑠𝑎𝑣𝑒

𝐼𝑡𝑜𝑡𝑎𝑙

𝐼𝑐𝑘𝑝𝑡
+

∑︁𝑁𝑓 𝑎𝑢𝑙𝑡

𝑖=1
(𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 +

𝐼𝑐𝑘𝑝𝑡

2
) (4)

It is obvious that 𝐼𝑐𝑘𝑝𝑡 ,𝑂𝑠𝑎𝑣𝑒 , and𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 are the key factors
determining the total overhead 𝑂𝑐𝑘𝑝𝑡 . In pursuit of optimiz-
ing fault tolerance efficiency, existing research has explored
various methods to diminish the above factors.

2.3.1 Two-phase Asynchronous Checkpointing. As
demonstrated in Figure 3, checkpointing model states from
GPU memory to distributed persistent storage involves two
phases: transferring from GPU memory to CPU memory
(GPU-to-CPU snapshot) and fromCPUmemory to distributed

persistent storage (CPU-to-Storage persist). The CPU-to-
Storage persist phase involves serializing the model states
and writing them to a distributed filesystem via the net-
work, while the GPU-to-CPU snapshot phase copies ten-
sors through PCIe. Given that both phases can significantly
hinder training progress if executed in a blocking manner,
asynchronously processing and overlapping them with on-
going training has emerged as a critical method to enhance
checkpointing efficiency [8, 26, 38, 42, 68, 70, 72].

The timeline illustrated in Figure 3 indicates that the asyn-
chronous GPU-to-CPU snapshot can proceed concurrently
with the forward and backward passes (denoted as “F&B”) of
the subsequent iteration, although it must finish before the
weight update phase. If the snapshot duration exceeds the
“F&B” period, it will trigger a checkpoint stall (“S”), thereby
stopping the training process until the snapshot comple-
tion. Unlike the GPU-to-CPU snapshot, the CPU-to-Storage
persist phase is not subjected to this limitation, as the snap-
shots residing in CPU memory can remain unaffected by the
ongoing training process.
However, existing asynchronous checkpointing systems

face the new challenges posed by MoE models: (1) MoE mod-
els extend the checkpointing duration without a correspond-
ing increase in “F&B” time, resulting in incomplete overlap
of the GPU-to-CPU snapshot and potential checkpoint stalls;
(2) prolonged CPU-to-Storage persist leads to an enlarged
𝐼𝑐𝑘𝑝𝑡 . In contrast, our methodologies effectively manage the
volumes of data transferred during both the snapshot and
persist phases, thereby addressing these issues.

2.3.2 Data-Parallel Sharding. Considering that data vol-
ume determines the duration of communication and stor-
age, eliminating redundancies and reducing checkpoint size
through data-parallel sharding [33, 47, 68, 72] is an effective
optimization. Since the original DP replicates model states
across all the DP ranks, each rank can store a distinct shard-
ing of the states, collectively forming the complete model
states through the aggregation of all ranks’ shards, as de-
picted in Figure 3.
With the evolution of DP techniques, model states may

already be uniformly partitioned across each DP rank. For
instance, ZeRO-1 and ZeRO-2 DP [52] partition the opti-
mizer states, whereas ZeRO-3 DP and Fully Sharded Data
Parallel (FSDP) [82] partition both the model parameters and
optimizer states. As discussed in Section 2.2, our focus is on
the ZeRO-2 DP + EP scenario, where model parameters are
replicated across each DP rank, as illustrated in Figure 1.
However, existing distributed training frameworks lack

an efficient data-parallel sharding strategy for MoE model
training. For instance, the Megatron-DeepSpeed framework
[40] confines the checkpointing of expert model states to
the first EP group, as illustrated by Figure 7(a), neglecting
the potential of distributed sharding across all EP groups.
In contrast, we implement fully sharded checkpointing for



MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Rank

0

Rank

1

Rank

2

Expert

3-0

Expert

3-1

Expert

3-2

…

…

…Expert

1-0

Expert

1-1

Expert

1-2

…

…

…

…

…

… Expert

5-0

Expert

5-1

Expert

5-2

…

…

… Expert

7-0

Expert

7-1

Expert

7-2

…

…

…

Figure 4. An illustration of our proposed partial experts
checkpointing (PEC)with sequential selection. At the current
checkpointing, “Expert(1-0, 3-1, 5-2, 7-0)” are saved, while
those not saved are marked in white. Blue arrows indicate
the iterative pattern of the sequential selection, which will
save “Expert(1-1, 3-2, 5-0, 7-1)” at the next checkpointing.

MoE model training and further introduce an adaptive shard-
ing strategy with our PEC mechanism, outperforming the
commonly used equal sharding strategy.

2.3.3 In-memory Checkpointing. Due to the superior
bandwidth of GPU-to-CPU copy and compute network data
transfers compared to CPU-to-Storage persist, several stud-
ies minimize 𝑂𝑠𝑎𝑣𝑒 by opting to store model states in the
CPU memory of other nodes instead of persistent storage
[72, 73]. This approach significantly reduces the duration of
checkpointing, thereby allowing for lower 𝐼𝑐𝑘𝑝𝑡 and 𝑂𝑐𝑘𝑝𝑡 .

However, the in-memory checkpointing solution encoun-
ters reliability problems within real-world large-scale GPU
clusters [68]. In such environments, multiple nodes within
the same backup group may experience simultaneous fail-
ures, resulting in severe data loss. In contrast, we introduce
a two-level checkpoint management strategy that benefits
from the efficiency of in-memory checkpointing while en-
suring fault tolerance across a wide range of scenarios.

2.3.4 Partial Checkpointing and Recovery. Previous
research [50] has demonstrated that the iterative-convergent
nature of machine learning (ML) training is capable of com-
pensating for the inconsistencies introduced by partial check-
pointing and recovery to some extent on Parameter Server
(PS) distributed training scenarios. Given that the model
parameters are distributed across multiple PS nodes, a par-
tial failure of these nodes is likely to result in only a partial
loss of the updates to the model parameters. Compared to
the process of saving and reloading the entire model states,
partial checkpointing and recovery strategies can signifi-
cantly decrease the data volume required for checkpoints.
This approach has subsequently proven to be effective in
the training of the Deep Learning Recommendation Model
(DLRM) [17, 37, 46], which only accesses and updates a small
segment of the model in each iteration.
However, large-scale distributed training systems and

their distributed parallel strategies employed by Transformer-
based LLMs differ significantly from PS and DLRM scenarios.

1 2 4 8 16 32 64
Ickpt

4
2

1
k p

ec

0.04 0.16 0.23 0.39 0.71 1.29 4.98

0.12 0.30 0.54 1.02 1.90 3.75 9.94

0.29 0.61 1.15 2.29 4.37 8.62 19.39

0.00

3.75

7.50

11.25

15.00

18.75

(a) PLT (%)

1 2 4 8 16 32 64
Ickpt

4
2

1
k p

ec

.8836.8839.8824.8854.8842.8849.8971

.8846.8819.8847.8839.8845.8856.8968

.8845.8833.8844.8808.8838.8898.9116

4.880

4.885
4.890
4.895
4.900
4.905
4.910

(b) Validation loss

Figure 5. Correlation analysis between (a) the Proportion
of Lost Tokens (PLT) and (b) the final validation loss. In (a),
the PLT centers on 3.75% observed in a PEC configuration of
𝐾𝑝𝑒𝑐 = 2 and 𝐼𝑐𝑘𝑝𝑡 = 32, which slightly degrades the model
accuracy compared to the non-fault case. The validation
losses are presented in (b), where the non-fault case’s loss of
4.8851 is taken as the center value to highlight the accuracy
deviations under various PEC configurations.

Consequently, no work has yet explored the integration of
partial methods into the fault tolerance of LLMs. Our work
pioneers in identifying the synergy between the inherent
sparsity of MoE LLMs and partial strategies, leading to the
development of a more efficient fault tolerance method with-
out harming the final model quality.

3 Partial Experts Checkpointing
In light of the substantial increase in checkpoint size predom-
inantly attributed to the multiplicity of FFN experts within
the MoE model, we introduce the concept of Partial Experts
Checkpointing (PEC) to significantly downsize the check-
point. In the PEC approach, a subset of experts—specifically,
𝐾𝑝𝑒𝑐 of the 𝑁 experts per MoE layer—is saved, while the
non-expert parts are preserved in their entirety. This strat-
egy results in a checkpoint size comparable to that of a dense
model when 𝐾𝑝𝑒𝑐 is set to 1, as illustrated in Figure 4. As a
device-agnostic checkpointing mechanism, PEC is generally
applicable across various MoE model training scenarios.

3.1 Analysis
3.1.1 Checkpoint Size. To accurately assess the efficacy
of PEC on reducing checkpoint size, we initially define the
size of a conventional checkpoint, denoted as 𝐶𝑓 𝑢𝑙𝑙 , which
saves the states of all model parameters. The formulation is
as follows:

𝐶𝑓 𝑢𝑙𝑙 ≈ (𝑃𝑛𝑒 + 𝑃𝑒 ) · (𝐵𝑤 + 𝐵𝑜 ) (5)

where 𝑃𝑛𝑒 and 𝑃𝑒 denote the number of parameters in the
non-expert and expert parts of the model, respectively. Each
parameter contributes fixed bytes of weight (𝐵𝑤) and opti-
mizer state (𝐵𝑜 ).
PEC, by contrast, only saves a subset of experts at each

checkpoint, leading to a reduced checkpoint size, denoted as



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

𝐶𝑝𝑒𝑐 , which is formulated as:

𝐶𝑝𝑒𝑐 ≈ (𝑃𝑛𝑒 +
𝐾𝑝𝑒𝑐

𝑁
𝑃𝑒 ) · (𝐵𝑤 + 𝐵𝑜 ) (6)

where 𝐾𝑝𝑒𝑐 denotes the number of experts saved per MoE
layer, and 𝑁 denotes the total number of experts in each
MoE layer. Given that the expert part typically constitutes
themajority of themodel parameters in existingMoEmodels,
PEC’s capability to reduce checkpoint size is considerable.

3.1.2 Impact onModel Accuracy. It is critical to consider
that recovering training from a PEC checkpoint may impact
the model accuracy, as it causes a loss of expert updates
contributed by the training input tokens. Specifically, the
recovery process can retrieve the latest model states of the
non-expert part and 𝐾𝑝𝑒𝑐 experts from the latest checkpoint,
while the remaining 𝑁 −𝐾𝑝𝑒𝑐 experts can only be recovered
to their states saved at the previous checkpointing.

To quantitatively assess the potential impact on accuracy
attributed to PEC, we introduce a novel metric, the Propor-
tion of Lost Tokens (PLT). The PLT metric is designed to
quantify the average proportion of tokens lost across all the
MoE layers throughout the training, formulated as follows:

𝑃𝐿𝑇 =
1

𝑁𝑚𝑜𝑒

𝑁𝑚𝑜𝑒∑︁
𝑖=1

∑𝑁𝑓 𝑎𝑢𝑙𝑡

𝑗=1 𝐿𝑖, 𝑗 (𝐼𝑐𝑘𝑝𝑡 , 𝐾𝑝𝑒𝑐 , 𝐹 )
𝑇𝑖 ·𝑇𝑜𝑝𝐾𝑖

(7)

where 𝑁𝑚𝑜𝑒 denotes the number of MoE layers within the
model, and 𝑁𝑓 𝑎𝑢𝑙𝑡 denotes the count of faults encountered
during the training. 𝐿𝑖, 𝑗 refers to the measured number of
the 𝑖𝑡ℎMoE layer’s lost tokens caused by the 𝑗𝑡ℎ fault, which
is influenced by the checkpointing interval 𝐼𝑐𝑘𝑝𝑡 , the num-
ber 𝐾𝑝𝑒𝑐 of saved experts, and the function 𝐹 for partial
experts selection (e.g. sequential or load-aware methods).
The product of the number of input tokens 𝑇𝑖 and 𝑇𝑜𝑝𝐾𝑖 of
MoE gating indicates the total number of tokens processed
by all experts in the 𝑖𝑡ℎ MoE layer during the training. It is
worth noting that the actual count of tokens processed by
all experts is typically less than 𝑇𝑖 ·𝑇𝑜𝑝𝐾𝑖 , primarily due to
the token dropout imposed by the expert capacity [31].
To investigate the correlation between PLT and model

accuracy, we conduct experiments that train GPT-125M-8E
models with varying PEC configurations (different values of
𝐾𝑝𝑒𝑐 and 𝐼𝑐𝑘𝑝𝑡 ) on Wikitext dataset [39]. Each model’s train-
ing process is designed to encounter a fault at the midpoint,
followed by a recovery from the saved PEC checkpoint.
As evidenced in Figure 5, the final validation loss of the

models experiences fluctuations (4.8808-4.8856) yet remains
comparable to the non-fault case (4.8851) when PLT is be-
low 3.75%. It substantiates the efficacy of PEC in minimizing
checkpoint size without harming model accuracy in the case
of limited PLT (more comprehensive accuracy evaluations
are in Section 6.3). Additionally, the results highlight a corre-
lation between smaller 𝐾𝑝𝑒𝑐 and larger 𝐼𝑐𝑘𝑝𝑡 with increased
PLT, which may impact the model accuracy.

3.2 Partial Experts Selection
As PEC only saves a subset of experts at each checkpoint,
selecting which experts to save is important. Different func-
tions of partial expert selection can lead to variations in PLT
and the recovered model states, thereby potentially impact-
ing the final model accuracy.
More importantly, considering that experts within each

MoE layer are distributed across various ranks and devices
via EP, as depicted in Figure 4, the partial expert selection
significantly affects the workload distribution across ranks,
thus impacting the time cost of checkpointing. The most
imbalanced workload scenario, for instance, involves check-
pointing “Expert(1-0, 3-0, 5-0, 7-0)”, all located in “Rank0”. In
this case, the checkpointing duration is primarily prolonged
by “Rank0”, which bears the heaviest workload.
Sequential Selection. Given the challenges associated

with the selection of partial experts, we propose a sequen-
tial selection strategy that sequentially alternates the target
experts, incorporating an interleaved schedule across MoE
layers and EP ranks. For instance, as illustrated in Figure 4, at
the first checkpointing time, “Rank0” saves “Expert(1-0, 7-0)”,
“Rank1” saves “Expert3-1”, and “Rank2” saves “Expert5-2”.
At the next checkpointing time, “Rank0” saves “Expert5-0”,
“Rank1” saves “Expert(1-1, 7-1)”, and “Rank2” saves “Expert3-
2”. With this strategy, PEC can achieve a balanced check-
pointing workload while maintaining an acceptable PLT.

Load-aware Selection. We extend our investigation into
the function of partial expert selection by incorporating a
load-aware approach that prioritizes the checkpointing of
𝐾𝑝𝑒𝑐 experts, characterized by the highest number of unsaved
updates. Based on our empirical results, load-aware selection
achieves model accuracy on par with sequential selection
but necessitates more complicated control mechanisms and
incurs higher costs, making it a less favorable option.

4 Fully Sharded Checkpointing
As discussed in Section 2.3.2, existing work lacks an effi-
cient data-parallel sharding strategy for checkpointing MoE
models in distributed training. Figure 7(a) demonstrates that
the baseline method provided by the Megatron-DeepSpeed
framework [40] only utilizes “Rank0” to save non-expert
states and “EP-Group-0” to save expert states.

4.1 Equal Sharding for Expert Part
In contrast to the hybrid strategy depicted in Figure 1, which
employs a single EP group, the prevailing practice [34, 76]
for large-scale distributed training of MoE models employs
multiple EP groups, as demonstrated in Figure 6.
To enhance efficiency by evenly distributing the check-

pointingworkload across distributed ranks, we implement an
equal sharding strategy for the expert part of the MoE model.
This strategy employs each expert as the smallest unit for



MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Atten

0

FFN

0

Atten

1

Expert

1-0

Rank

0

Atten

0

FFN

0

Atten

1

Expert

1-1

Rank

1
…

…

Atten

0

FFN

0

Atten

1

Expert

1-0

Rank

2

Atten

0

FFN

0

Atten

1

Expert

1-1

Rank

3
…

…

EP-Group-0 
EP-Group-1 

(a) Model Parameters

Atten

0

FFN

0

Atten

1

Expert

1-0

Rank

0

Atten

0

FFN

0

Atten

1

Expert

1-1

Rank

1
…

…

Atten

0

FFN

0

Atten

1

Expert

1-0

Rank

2

Atten

0

FFN

0

Atten

1

Expert

1-1

Rank

3
…

…

EP-Group-0 
EP-Group-1 

Atten

0

FFN

0

Atten

1

Atten

0

FFN

0

Atten

1

Atten

0

FFN

0

Atten

1

Atten

0

FFN

0

Atten

1

Expert

1-0

Expert

1-1

Expert

1-0

Expert

1-1

(b) Optimizer States

Figure 6. An illustration of the model states across 4 dis-
tributed ranks in training. The training utilizes the hybrid
parallel strategy of ZeRO-2 DP + EP, configured with the
parallel degree of DP = 4 and EP = 2.

distribution across various EP groups, each containing repli-
cas of the same experts. As exemplified in Figure 7, “Rank0”
in “EP-Group-0” is allocated the first half of “Expert0”, while
“Rank2” in “EP-Group-1” is assigned the second half.

4.2 Equal Sharding for Non-Expert Part
Given the considerable overhead associatedwith fine-grained
sharding methods [47] and the fact that the model param-
eters of the non-expert part comprise only 2% of the total
checkpoint volume, we implement a coarse-grained shard-
ing approach, utilizing layers (e.g. Attention and FFN) as
the minimum partition units. Building upon this framework,
we introduce an equal sharding strategy, aiming to evenly
distribute the workload of checkpointing non-expert layers
across all DP ranks, as depicted in Figure 7(b). We define the
ideal checkpointing workload of each rank, 𝐶𝑟𝑎𝑛𝑘 , using the
following formulation:

𝐶𝑟𝑎𝑛𝑘 ≈ (𝑃𝑛𝑒 + 𝑃𝑒 ) · 𝐵𝑜
𝐷𝑒𝑝

+ 𝑃𝑛𝑒 · 𝐵𝑤
𝐷𝑑𝑝

+ 𝑃𝑒 · 𝐵𝑤
𝐷𝑒𝑝

(8)

where 𝐷𝑑𝑝 and 𝐷𝑒𝑝 denote the parallel degree of DP and
EP, respectively. While this method may not achieve exact
equality as observed in tensor-level sharding, it markedly
diminishes the control cost. Additionally, the sharding pat-
tern of each rank is established during the initial stage and
maintained throughout the training.

4.3 Adaptive Sharding for Non-Expert Part
PEC may lead to an imbalanced checkpointing workload for
the expert part if the following conditions are met:

(𝐾𝑝𝑒𝑐 · 𝑁𝑚𝑜𝑒 ) mod 𝐷𝑒𝑝 ≠ 0 or
𝐾𝑝𝑒𝑐 · 𝑁𝑚𝑜𝑒

𝐷𝑒𝑝

mod
𝐷𝑑𝑝

𝐷𝑒𝑝

≠ 0.

(9)
Using Figure 4 as an example, “Rank0” is responsible for
saving two experts, whereas the other ranks save one expert
each, resulting in an imbalanced workload.

To leverage the spare capacity across ranks, we introduce
an adaptive sharding strategy, which adaptively allocates

Rank

3
Expert1Non-Expert

Rank

2
Expert0Non-Expert

Rank

1
Expert1Non-Expert

Rank

0
Expert0Non-Expert

EP-Group-0 
EP-Group-1 

(a) Baseline

Rank

1
Expert1

Rank

0
Expert0Non-Expert

Rank

3
Expert1Non-Expert

Rank

2
Expert0Non-Expert

EP-Group-0 
EP-Group-1 

Non-Expert

Non-Expert

Non-Expert

Non-Expert Expert0

Expert0

Expert1

Expert1

(b) Our Fully Sharded Checkpointing

Figure 7. An illustration of two distinct checkpointing meth-
ods employed for training the MoE model, configured with
DP = 4 and EP = 2. (a) illustrates the baseline method pro-
vided by the Megatron-DeepSpeed framework. (b) presents
our proposed fully sharded checkpointing with equal shard-
ing. For simplification, the model states are divided into two
segments: the non-expert and the expert parts. The horizon-
tal segments within each part represent various layers.

non-expert parts based on the selection pattern of PEC. Fur-
thermore, it incorporates a greedy algorithm for shard alloca-
tion, prioritizing the assignment of larger modules to ranks
exhibiting the least accumulated workload. Additionally, the
initially established sharding pattern can also be consistently
applied throughout the training process, without the need for
further synchronization or dynamic adjustments at runtime,
due to the consistency of the PEC sequential selection.

In our implementation, sharding strategies are exclusively
utilized to partitionmodel parameters, tailored to our specific
scenario of ZeRO-2 DP + EP, where optimizer states are
already partitioned, as depicted in Figure 6. Nevertheless,
our methodologies are applicable to the partitioning of both
model parameters and optimizer states in scenarios that do
not incorporate ZeRO sharding [52].

5 Two-Level Checkpointing Management
To maximize the benefits of hierarchical storage, we propose
a two-level checkpointingmanagement into ourMoC system,
comprising (1) in-memory snapshot and (2) persist, coupled
with a suite of optimization techniques.

5.1 Two-level PEC Saving and Recovery
As depicted in Figure 8, we implement the saving and re-
covery processes across CPU memory and storage, which
takes advantage of the superior GPU-to-CPU bandwidth and
distributed storage’s persistence.

Saving. We introduce the snapshot-PEC and persist-PEC
processes, designed to alleviate data transmission burdens
during their respective levels. Furthermore, we refine the
hyperparameter 𝐾𝑝𝑒𝑐 in PEC into two variables: 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡
and 𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 . This distinction allows snapshot-PEC to select
𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 out of 𝑁 experts for transfer from GPU to CPU
memory. Concurrently, persist-PEC is tasked with selecting
𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 out of the 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 experts for subsequent storage



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

Rank-0

Rank-1

Node-0

CPU-Memory

GPU NE E0 E0

GPU NE E1 NE1 E1

Rank-2

Rank-3

Node-1

CPU-Memory

GPU NE E2 NE2 E2

GPU NE E3 NE3 E3

Snapshot-PEC Persist-PEC

Distributed

Persistent

Storage

NE
E0
E1
E2
E3

Rank-0

Rank-1

Node-0

CPU-Memory

GPUNEE0E0

GPUNEE1NEE1

Rank-2

Rank-3

Node-1

CPU-Memory

GPUNEE2NE0,1E2

GPUNEE3NE2,3E3

Normal 
& Saving

Node-0 Fault
& Recovery

NE0

NE1

NE2

NE3

NE0,1

NE2,3

Figure 8. Illustrations of the saving process during normal training (left half) and the recovery process after a fault occurrence
(right half), as implemented in our two-level checkpointing management. Orange “E(0-3)” denote distributed expert parts, while
green “NE” denotes the non-expert part, and “NE(0-3)” denote the “NE” shards. The data transfer for expert and non-expert
parts is represented by arrows in matching colors. The diagonal filled “E(0-3)” indicates not involved at the latest checkpoint.

Time

Train

Snapshot Status

Persist Status

F&B U F&B U F&B U F&B U F&B U

b1 b2 b3 b1

b1 b2 b3 b1

Snapshot Status Persist  Status Recovery Status
start

another persist finish 

snapshot finish & no persist buffer persist
finish 

b1 b2 b3Recovery Status

Figure 9. The timeline of the asynchronous checkpointing
process with triple-buffer. The orange part illustrates the
status transition among the three buffers (“b1”, “b2”, “b3”).
The time span of each buffer in a snapshot or persist status
can reflect the time cost of the snapshot or persist process.

persistence. As exemplified in Figure 8, snapshot-PEC saves
only E(0,1) to CPU memory, followed by persist-PEC, which
saves only E0 to storage. To streamline themanagement of all
checkpointed model modules, we utilize key-value pairs for
efficient retrieval from both memory and distributed storage.
Recovery. In the event of a fault, while the fault nodes

may lose their data, other normal nodes can recover from the
in-memory snapshots, thus not only reducing the overhead
of loading data from persistent storage but also mitigating
the PLT attributable to persist-PEC. Take Figure 8 as an
example, the restarted Node-0 needs to load NE and E(0,1)
from persistent storage, while Node-1 only needs to load
NE(0,1). Furthermore, Node-1 benefits from recovering E(2,3)
directly from memory, which contains more recent states
than those available in storage, thereby reducing the PLT.

5.2 Asynchronous Checkpointing & Triple Buffering
To minimize the overhead of states saving 𝑂𝑠𝑎𝑣𝑒 , we im-
plement an asynchronous checkpointing mechanism that
allows checkpointing to overlap with the normal training
processes. Specifically, we develop an agent at each node to

facilitate the two-level checkpointing management through
a triple-buffer mechanism. As illustrated in Figure 9, the
triple buffering comprises snapshot, persist, and recovery
buffers, each meticulously designed to ensure data integrity
during the saving process and data consistency during recov-
ery. Initially, all of these buffers are in the snapshot status.
Each snapshot process, initiated by the asynchronous thread
within each training process, involves the transfer and seri-
alization of data from the GPU into one of these snapshot
buffers. Upon the completion of a snapshot process—and in
the absence of an ongoing persist buffer—the corresponding
buffer transitions to the persist status, starting the transfer
of data to persistent storage. Following the completion of the
persist process, the buffer then becomes a recovery buffer,
reflecting the latest checkpoint available for recovery, until
another persist buffer transitions.

5.3 Adaptive Configuration for Two-Level PEC
Existing studies minimize 𝑂𝑙𝑜𝑠𝑡 by reducing the checkpoint-
ing interval 𝐼𝑐𝑘𝑝𝑡 [17, 42, 73]. This approach may increase
𝑂𝑠𝑎𝑣𝑒

𝐼𝑡𝑜𝑡𝑎𝑙
𝐼𝑐𝑘𝑝𝑡

, necessitating a considered trade-off between the
two metrics. In addition to 𝐼𝑐𝑘𝑝𝑡 , we introduce two new ad-
justable hyperparameters, 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 and 𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 , aimed at
reducing the durations of snapshot and persist, respectively,
presenting a new trade-off between efficiency and PLT.
To navigate these trade-offs across various software and

hardware scenarios, we propose an adaptive configuration
scheme for two-level PEC. Our primary strategy involves op-
timizing the value of 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 for snapshot-PEC to ensure it
can be completely overlapped by the next F&B, thereby min-
imizing 𝑂𝑠𝑎𝑣𝑒 while achieving a low PLT. Even though the
persist process can be fully overlapped with the subsequent
training, its duration determines the lower bound for 𝐼𝑐𝑘𝑝𝑡 .
As our two-level recovery method significantly reduces the
PLT caused by persist-PEC, 𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 can be set to a relatively
small value, which in turn, achieves the lowest 𝐼𝑐𝑘𝑝𝑡 .
Additionally, as discussed in Section 4.3, PEC may lead

to workload imbalances across distributed ranks. In some



MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

16(Full) 8 4 2 1
Kpec

0

5

10

15

20

25

Ch
ec

kp
oi

nt
 S

ize
 (G

B)

100%

69.2%

53.8%
46.1% 42.3%

(a) Total Checkpoint Size

Baseline EE EE+EN EE+AN
Method

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ch
ec

kp
oi

nt
 S

ize
 (G

B)

Full Kpec = 1

(b) Bottleneck Rank in Case1

Baseline EE EE+EN EE+AN
Method

0.0

0.5

1.0

1.5

2.0

Ch
ec

kp
oi

nt
 S

ize
 (G

B)

Full Kpec = 1

(c) Bottleneck Rank in Case2

Baseline EE EE+EN EE+AN
Method

0.0

0.5

1.0

1.5

2.0

Ch
ec

kp
oi

nt
 S

ize
 (G

B)

Full Kpec = 1

(d) Bottleneck Rank in Case3

Figure 10. Experimental results of checkpoint size. (a) shows the impact of PEC on total checkpoint size. (b-d) illustrate the
checkpointing workload of the bottleneck rank across various distributed configurations. “EE” indicates equal sharding for the
expert part, while “EN” and “AN” represent equal sharding and adaptive sharding for the non-expert part, respectively.

cases, an increased 𝐾𝑝𝑒𝑐 value may leverage spare capacity,
reducing the PLT while maintaining the same total overhead.
Dynamic-K for Fault Accumulation. In practical sce-

narios, large-scale distributed trainingmay encounter numer-
ous faults, potentially leading to an augmented PLT. To miti-
gate this issue, we propose the Dynamic-K strategy, which
adjusts the 𝐾𝑝𝑒𝑐 parameter in reaction to the accumulation
of faults, aiming to keep PLT below a 3.75% threshold. This
method recalibrates the 𝐾𝑝𝑒𝑐 value subsequent to each fault
recovery incident, based on the aggregated PLT incurred by
the system. If the aggregated PLT attributable to a specific
𝐾𝑝𝑒𝑐 surpasses its limit,𝐾𝑝𝑒𝑐 will be doubled, and this process
is reiterated until checkpointing all experts.

Table 1. Hyperparameters for experimental MoE models.
Parameter GPT-125M-8E GPT-350M-16E SwinV2-MoE

Num. layers 12 24 [2, 2, 18, 2]
Hidden size 768 1024 96
Num. atten. heads 12 16 [3, 6, 12, 24]
Num. MoE layers 6 12 10
Num. experts/layer 8 16 8
Num. parameters 323M 1.7G 173M

Table 2. Configurations for GPT-350M-16E model training.
Configuration Node GPU DP TP PP EP Experts/GPU

Case1 1 8 8 1 1 8 2
Case2 2 16 16 1 1 16 1
Case3 2 16 16 1 1 8 2

6 Evaluation
6.1 Experimental Setup
We implement our proposedMoC-System and conduct exten-
sive experiments upon the Megatron-DeepSpeed [40, 51, 62],
which is an acclaimed open-source framework supporting
the distributed training of MoE models. As shown in Ta-
ble 1, we experiment with both language and vision mod-
els. The experimental language models (GPT-125M-8E and
GPT-350M-16E) are extensions of GPT-3 like NLG model
[5], provided by DeepSpeed-MoE [51]. The GPT-125M-8E

model is pre-trained on the Wikitext-2 dataset [39] for the
correlation analysis between PLT and final trained accu-
racy, as illustrated in Figure 5. The GPT-350M-16E model
is pre-trained on a 1B token subset of the SlimPajama-627B
dataset [63]. Moreover, the distributed training of the GPT-
350M-16E model is experimented with the three different
configurations, as shown in Table 2. Using the hybrid parallel
strategy of ZeRO-2 DP [52] and EP, the training is deployed
on a cluster that comprises a total of 60 nodes with 8×A800-
SXM4-80GB GPUs each. The vision model, SwinV2-MoE
[23, 36], is trained on the ImageNet-1K dataset [14].

6.2 Improvements in Checkpointing Efficiency
6.2.1 Checkpoint Size. We evaluate the effectiveness of
PEC in reducing checkpoint size through experiments on the
GPT-350M-16E model training. Unless otherwise specified in
subsequent experiments, PEC employs the sequential selec-
tion strategy, and the baseline refers to the method provided
by the Megatron-DeepSpeed framework [40]. As illustrated
in Figure 10(a), the total checkpoint size for each process
decreases as 𝐾𝑝𝑒𝑐 decreases, reaching 42.3% of the full model
checkpoint size when 𝐾𝑝𝑒𝑐 is set to 1.

However, merely reducing the total checkpoint size is in-
sufficient for optimizing efficiency in distributed training.
As the checkpointing workload is distributed across vari-
ous training ranks, the duration of the blocking checkpoint-
ing process is primarily determined by the bottleneck rank,
which has the heaviest workload and longest processing time.
Therefore, we further assess the checkpointing workload of
the bottleneck rank using different sharding strategies, as
illustrated in Figure 10(b)-10(d).

The results indicate that our fully sharded checkpointing
strategy, which applies equal sharding to both non-expert
and expert parts, significantly reduces the workload of bottle-
neck rank in both full saving (12% to 28%) and PEC scenarios
(22% to 29%). Notably, equal sharding of the expert part is
only effective in scenarios with multiple EP groups (Case 3).
With 𝐾𝑝𝑒𝑐 = 1, adaptive sharding of the non-expert part can
further reduce the workload by 3.7% to 6.1%.



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

0 1 2 3 4 5 6
Time (s)

K = 1
K = 2
K = 4
K = 8

K = 16
(Full)

Baseline
Train

Overlap
F&B
Update
Snapshot
Persist

(a) Case1 Configuration

0 1 2 3 4
Time (s)

K = 1
K = 2
K = 4
K = 8

K = 16
(Full)

Baseline
Train

Overlap
F&B
Update
Snapshot
Persist

(b) Case2 Configuration

0 1 2 3 4 5
Time (s)

K = 1
K = 2
K = 4
K = 8

K = 16
(Full)

Baseline
Train

Overlap
F&B
Update
Snapshot
Persist

(c) Case3 Configuration

Figure 11. Duration of each process in a training iteration with checkpointing. Different values of “𝐾” represent experiments
where both 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 and 𝐾𝑝𝑒𝑟𝑠𝑖𝑡 of two-level checkpointing (“Snapshot” and “Persist”) are set to “𝐾”. The green “Overlap” line
marks the duration that can be overlapped by the forward and backward passes (“F&B”). “Update” denotes the weight update.

6.2.2 Checkpointing time. Our optimizations effectively
reduce checkpoint size and balance the workload across
distributed ranks, resulting in a corresponding decrease in
checkpointing duration by up to about 50%. In the exper-
iments depicted in Figure 11, our methods all employ the
fully sharded checkpointing strategy, enabling even the full
savings (𝐾 = 16) to outperform the baseline.

As discussed in Section 2.3.1, the snapshot process must be
completely covered by the forward and backward passes in
the subsequent iteration; otherwise, the weight update will
be blocked. Figure 11 indicates that the baseline snapshot
duration exceeds the forward and backward time in Case1
and Case3. To address this problem, Case1 needs to employ
a fully sharded checkpointing strategy, while Case3 requires
saving fewer than four experts with PEC.
Moreover, the training process in Case3 is 0.5 seconds

faster than in Case2, highlighting why the prevailing hybrid
strategy confines EP within a node—limiting All-to-All com-
munication to intra-node operations is more efficient than
inter-node communication. These experiments demonstrate
the broad applicability of our methods in practical scenarios.

6.2.3 Asynchronous Checkpointing. Given that our ap-
proaches have been validated to reduce the duration of the
checkpointing process, we further assess the end-to-end op-
timization efficacy of our MoC-System, which implements
an asynchronous checkpointing process. As illustrated in
Figure 12, the fully optimized asynchronous process in our
MoC-System (“MoC-Async”) can decrease the overhead of
each checkpointing process (𝑂𝑠𝑎𝑣𝑒 ) by 98.2% to 98.9% and
accelerate each training iteration by 3.25 to 5.12 times in
the three experimental cases, compared to the baseline us-
ing blocking checkpointing. 𝑂𝑠𝑎𝑣𝑒 refers to the additional
time that surpasses the normal training processes, including
“F&B” and “Update,” as indicated by the duration beyond the
red dotted line in Figure 12.

When our asynchronous checkpointing is applied without
optimization by PEC and fully sharded techniques (“Base-
Async”), it can overlap 97.9% of the checkpointing time
in Case 2, as the snapshot duration is sufficiently short to

4.13x

5.12x

3.25x

-98.2%

-98.5%

-98.9%

Figure 12. Duration of a training iteration across three con-
figurations, utilizing three checkpointing methods: (1) base-
line, (2) “Base-Async,” which uses basic asynchronous check-
pointing without our PEC and fully sharded checkpointing
techniques, and (3) “MoC-Async,” representing the fully opti-
mized asynchronous process within our MoC-System. “MoC-
Async” can reduce checkpointing overhead by more than
98% compared to the baseline.

achieve complete overlap. However, this method can only
overlap 86.3% and 92.1% in Case 1 and Case 3, respectively,
because their durations are too long to be fully overlapped.
Employing all optimizations, “MoC-Async” can achieve 1.4%
to 33.2% improvements over “Base-Async” in the three cases.

In addition to reducing 𝑂𝑠𝑎𝑣𝑒 , our “MoC-Async” achieves
half the 𝐼𝑐𝑘𝑝𝑡 compared to the “Base-Async” method, as it
takes only half the time to complete the snapshot and persist
process. For instance, it reduces 𝐼𝑐𝑘𝑝𝑡 from 2.3 to 1.2 in Case
2. Consequently, our “MoC-Async” can minimize the overall
checkpoint overhead 𝑂𝑐𝑘𝑝𝑡 .

6.2.4 Scaling and Generalizing. To demonstrate the scal-
ability and generalizability of our proposed MoC-System, we
conduct simulations to assess its efficacy across various con-
figurations of training factors, including the number of GPUs,
parallelism, hardware capability, sequence length, and model
size. Our simulations utilize the ASTRA-SIM simulator [54]
to model the computation and communication time costs
for each iteration of distributed MoE model training across
various scenarios with differing computing power and com-
munication bandwidth. Aligned with our actual measured



MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

32 64 128 256 512 1024
Number of GPUs

0
5

10
15
20
25
30
35

Ti
m

e 
(s

)

(a) DP+EP (A800)

32 64 128 256 512 1024
Number of GPUs

0
5

10
15
20
25
30
35

Ti
m

e 
(s

)

(b) DP+EP+TP (A800)

32 64 128 256 512 1024
Number of GPUs

0
2
4
6
8

10
12
14

Ti
m

e 
(s

)

(c) DP+EP (H100)

512 1024 2048 4096
Sequence Length

0
5

10
15
20
25

Ti
m

e 
(s

)

(d) Sequence Length

small Medium Large
Model Size

0

10

20

30

40

Ti
m

e 
(s

)

(e) Model Size

32 64 128 256 512 1024
Number of GPUs

0
2000
4000
6000
8000

10000
12000
14000
16000

To
ta

l S
ize

 (G
B)

Base-Persist
MoC-Persist

(f) Pesist Size
Figure 13. Scaling and generalizing results across various
training factors. (a) Scaling the number of A800 GPUs using
DP+EP parallelism, with each GPU assigned a unique expert
for each MoE layer. (b) Scaling the number of A800 GPUs
using DP+EP+TP parallelism, incorporating a 4-degree TP
into the existingDP+EP configuration. (c) Scaling the number
of H100 GPUs using DP+EP parallelism. (d) Generalizing
different training sequence lengths. (e) Generalizing different
model sizes. (f) The file size of the persist process across the
DP+EP configurations with varying numbers of A800 GPUs.

performance, we configure the A800 GPU simulations with
312 TFLOPS at a 20% utilization rate and a GPU-to-CPU
snapshot bandwidth of 1 GB/s. Similarly, the H100 GPU sim-
ulations are set with 989 TFLOPS at a 20% utilization rate
and a GPU-to-CPU snapshot bandwidth of 2 GB/s.
To reflect current large-scale training practices, we sim-

ulate the training of large LLaMA-like MoE models, which
are commonly used in real-world applications [25, 34]. In
our simulations, depicted in Figure 13, we configure the MoE
models with a hidden size of 2048, 16 attention heads, a head
dimension of 128, an expert intermediate size of four times
the hidden size, and 24 layers. Consistent with the three
configurations used in Figure 12, Figure 13 illustrates the du-
ration of a training iteration of three checkpointing methods:
“Baseline,” “Base-Async,” and “MoC-Async.” Furthermore, Fig-
ure 13 breaks down the timing of the two asynchronous
checkpointing methods to demonstrate the overlap duration
of “F&B” and “Snapshot”, termed “F&B/Snapshot Overlap.”

Number of GPUs. To demonstrate the scalability of the
MoC-System for large-scale training, we scale the model
training across varying numbers of GPUs. Specifically, we
employ Data Parallelism (ZeRO-2) and Expert Parallelism by

assigning each expert of an MoE layer to a distinct GPU, scal-
ing both the system and the model size. Figure 13(a) shows
that the “F&B,” which can be used to overlap the snapshot
overhead, significantly increases as the number of GPUs in-
creases. Compared to the baseline, the two asynchronous
checkpointing methods effectively facilitate overlap, thereby
reducing time costs. When the number of GPUs is less than
1024, the snapshot duration of “Base-Async” is too long to be
fully overlapped, resulting in lower efficiency compared to
“MoC-Async.” In contrast, “MoC-Async,” configured to save
only 1/8 of the experts per checkpoint, reduces the required
snapshot time, making “F&B” the bottleneck of the total time
when exceeding 64 GPUs. Additionally, “MoC-Async” can
achieve substantial optimization even when “F&B” is consid-
erably less than “Snapshot,” a benefit that “Base-Async” is
unable to provide.
In this setup, an equal number of distinct expert parame-

ters is allocated to each GPU, resulting in the data volume for
each GPU-to-CPU snapshot remaining similar. However, as
the number of GPUs increases, the data volume for CPU-to-
storage persist on the cluster filesystem grows significantly,
as illustrated in Figure 13(f). Our “MoC-Persist” method sig-
nificantly reduces the persist file size and the time required
for the persist process, enabling shorter checkpoint intervals
and consequently minimizing the lost time due to faults.

Parallelism.To generalize the efficacy of theMoC-System
across various parallelism configurations, we further investi-
gate training using the DP+EP+TP parallelism to train mod-
els with the same number of experts as in the DP+EP sce-
nario, as depicted in Figure 13(b). Although different par-
allelism strategies impact the iteration time of “F&B,” the
behavior observed during checkpointing is similar to that
seen with the DP+EP configuration (Figure 13(a)). Consis-
tently, “MoC-Async” maintains optimal efficiency across all
tested GPU configurations, particularly when the number
of GPUs is fewer than 1024, where the snapshot duration of
“Base-Async” cannot be fully overlapped.

Hardware Capability. To generalize the efficacy of the
MoC-System across different hardware platforms, we con-
duct training simulations with the A800 GPU (Figure 13(a))
and the H100 GPU (Figure 13(c)) configurations. Due to vari-
ations in capabilities such as GPU computing power, GPU
memory bandwidth, NVLink bandwidth, and GPU-to-CPU
PCIe bandwidth, the durations of both “F&B” and “Snapshot”
differ in the H100 scenario, resulting in varying overlap
performance. Specifically, “MoC-Async” demonstrates sig-
nificantly greater efficiency than other methods across all
tested H100 configurations, as the snapshot of “Base-Async”
cannot be fully overlapped even with 1024 GPUs. It is an-
ticipated that the computation and communication capabili-
ties associated with “F&B” will advance more rapidly than
the GPU-to-CPU data transmission capabilities in future
hardware platforms. Therefore, reducing the data volume of



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

checkpointing through “MoC-Async” will remain valuable
for larger-scale distributed training in the future.
Sequence Length. Sequence length is a critical factor

influencing the “F&B” duration. To investigate its impact, we
conduct simulations with varying sequence lengths using
the DP+EP configuration on 256 A800 GPUs. While longer
sequences significantly increase the “F&B” time, variations in
sequence length do not impact the checkpointing process, as
shown in Figure 13(d). This is because the checkpointed data
pertains to the constant model parameters rather than the dy-
namic activations. Consequently, “MoC-Async” can achieve
higher efficiency across all evaluated sequence lengths.
Model Size. As larger model sizes lead to increased iter-

ation times and larger data volumes for checkpointing, we
conduct simulations using models of three different sizes:
a hidden size of 1024 (“Small”), 2048 (“Medium”), and 3072
(“Large”), as illustrated in Figure 13(e). These simulations
are carried out using the DP+EP parallelism with 256 A800
GPUs. The results show that “MoC-Async” not only improves
efficiency across various model sizes but provides more pro-
nounced efficacy in scenarios involving larger-scale mod-
els. This is because model size impacts both the “F&B” and
“Snapshot.” Due to the disparity in capabilities between com-
putation and GPU-to-CPU data transmission, the duration
of snapshots increases more significantly with the growth
of the model size.

6.2.5 Modeling and Analysis. Based on the scaling and
generalizing simulations detailed in Section 6.2.4, we con-
clude that the identified factors influence the efficiency of
the checkpointing system in two ways: (1) by affecting the
duration of each iteration (𝑇𝐹&𝐵), and (2) by affecting the time
required for the snapshot (𝑇𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 ). Specifically, sequence
length affects only 𝑇𝐹&𝐵 , whereas the number of GPUs, par-
allelism, hardware capability, and model size influence both
𝑇𝐹&𝐵 and 𝑇𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 . Together, these factors determine the
checkpoint saving overhead (𝑂𝑠𝑎𝑣𝑒 ), ideally expressed as:

𝑂𝑠𝑎𝑣𝑒 =

{
𝑇𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 −𝑇𝐹&𝐵, if 𝑇𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 > 𝑇𝐹&𝐵
0. if 𝑇𝑆𝑛𝑎𝑝𝑠ℎ𝑜𝑡 ≤ 𝑇𝐹&𝐵

(10)

Based on Equation 4 in Section 2.3 and assuming a con-
stant failure rate denotes as 𝜆, the number of faults can be

𝑁𝑓 𝑎𝑢𝑙𝑡 ≈ 𝜆𝐼𝑡𝑜𝑡𝑎𝑙 . (11)
The total overhead associated with the existing full check-
pointing method, which saves all model states and is denoted
as 𝑂𝐹𝑢𝑙𝑙

𝑐𝑘𝑝𝑡
, as well as our proposed MoC method, denoted as

𝑂𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

, can be expressed as follows:

𝑂𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

≈ 𝑂𝐹𝑢𝑙𝑙
𝑠𝑎𝑣𝑒

𝐼𝑡𝑜𝑡𝑎𝑙

𝐼 𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

+ 𝜆𝐼𝑡𝑜𝑡𝑎𝑙

(
𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 +

𝐼 𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

2

)
, (12)

𝑂𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

≈ 𝑂𝑀𝑜𝐶
𝑠𝑎𝑣𝑒

𝐼𝑡𝑜𝑡𝑎𝑙

𝐼𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

+ 𝜆𝐼𝑡𝑜𝑡𝑎𝑙

(
𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 +

𝐼𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

2

)
. (13)

2k 3k 4k 5k 6k 7k 8k 9k 10k
Iterations

3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0

Va
lid

at
io

n 
Lo

ss

Fault

Fault

Fault Fault Fault

Baseline
W
O
WO
WO-2L

(a) GPT-350M-16E

0 10 50 80
Epoch

0
10
20
30
40
50
60
70
80

Te
st

 A
cc

ur
ac

y 
(%

)

0.012

0.226

0.150
0.012Baseline

Sequential
Load-aware

(b) SwinV2-MoE

Figure 14. Loss curve of the GPT-350M-16E model pre-
training (a) and test accuracy of the SwinV2-MoE model
pre-training (b). In (a), faults occur every 2k iterations, in-
dicated by red points. “W” and “O” denote the use of PEC
(𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 = 4 and 𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 = 1) on weights and optimizer
states, respectively. “-2L” refers to the use of two-level re-
covery, while methods without “-2L” recover solely from the
persistent checkpoint stored in storage. In (b), faults are in-
troduced at epochs(0, 10, 50, 80), with test accuracy reported
at the conclusion of each epoch.

𝑂𝐹𝑢𝑙𝑙
𝑠𝑎𝑣𝑒 and 𝑂𝑀𝑜𝐶

𝑠𝑎𝑣𝑒 represent the overhead associated with sav-
ing model states for two respective methods, while 𝐼 𝐹𝑢𝑙𝑙

𝑐𝑘𝑝𝑡
and

𝐼𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

denote the checkpointing intervals configured for each
method. To ensure that the overhead of the MoC method is
less than that of the full checkpointing method, the following
conditions must be met:

𝑂𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

< 𝑂𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

, (14)

𝑂𝑀𝑜𝐶
𝑠𝑎𝑣𝑒

𝐼𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

+ 𝜆
(
𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 +

𝐼𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

2

)
<
𝑂𝐹𝑢𝑙𝑙
𝑠𝑎𝑣𝑒

𝐼 𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

+ 𝜆
(
𝑂𝑟𝑒𝑠𝑡𝑎𝑟𝑡 +

𝐼 𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

2

)
,

(15)

𝑂𝑀𝑜𝐶
𝑠𝑎𝑣𝑒

𝐼𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

+ 𝜆
𝐼𝑀𝑜𝐶
𝑐𝑘𝑝𝑡

2
<
𝑂𝐹𝑢𝑙𝑙
𝑠𝑎𝑣𝑒

𝐼 𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

+ 𝜆
𝐼 𝐹𝑢𝑙𝑙
𝑐𝑘𝑝𝑡

2
. (16)

Based on the condition outlined in Equation 16, we can
identify two strategies to leverage the advantages of our
proposed MoC design: (1) By maintaining the same check-
point interval as the full checkpointing method, MoC can
reduce overhead because it has a smaller saving overhead
for each checkpointing. (2) By decreasing the checkpoint
interval (more frequent checkpointing) to equalize the ratio
of𝑂𝑠𝑎𝑣𝑒 to 𝐼𝑐𝑘𝑝𝑡 between MoC and the full method, MoC can
still reduce the total overhead. This reduction is achieved by
minimizing the lost time caused by faults, as the lost time is
directly proportional to the checkpoint interval.

6.3 Impact on Model Accuracy
In Section 3.1.2 and Figure 5, we initially demonstrate the
efficacy of our proposed PEC in reducing checkpoint size



MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Table 3. Accuracy results (%) of the models on downstream tasks, pre-trained as shown in Figure 14. The downstream tasks
includes: HellaSwag [80], PIQA [4], WinoGrande [57], BoolQ [10], ARC-Easy [11], OBQA [41], RACE [29], MathQA [2]. “Ckpt”
indicates the relative total checkpoint size compared to the baseline, which saves the full model states. “Deviation” shows the
deviation of the minimum and maximum accuracy of our methods from the baseline.

Method Ckpt HellaSwag PIQA WinoGrande BoolQ ARC-E OBQA RACE MathQA Avg. (↑)

Baseline 1 26.85 58.22 49.09 54.77 36.83 13.00 24.21 20.54 35.44
W 0.88 26.92 58.16 49.72 57.52 37.84 12.80 24.69 20.84 36.06
O 0.54 26.93 58.00 48.54 61.28 37.21 13.40 25.26 19.97 36.32
WO 0.42 26.91 58.38 49.33 61.31 37.33 13.20 24.50 20.20 36.40
WO-2L 0.42 26.96 58.49 50.12 61.74 37.12 13.20 24.40 20.13 36.52

Deviation - (0.06, 0.11) (-0.22, 0.27) (-0.55, 1.03) (2.75, 6.97) (0.29, 1.01) (-0.20, 0.40) (0.19, 1.05) (-0.57, 0.30) (0.62, 1.08)

without compromising model accuracy. We then conduct an
in-depth evaluation of its impact on model accuracy.
As shown in Figure 14(a), applying PEC to save model

weights (“W”), optimizer states (“O”), or both (“WO” and
“WO-2L”) results in a validation loss curve comparable to the
baseline, which saves the full states during the pre-training
of the GPT-350M-16E model.
Given the similar training curves across different check-

pointing methods, we further evaluate downstream tasks for
each pre-trained model. Compared to the baseline method,
which retains all states, our lossy methods (“W”, “O”, “WO”
and “WO-2L”) achieve higher average accuracy, ranging from
0.62% to 1.08%, as shown in Table 3. Notably, our methods
show the most significant accuracy improvement on the
BoolQ task, ranging from 2.75% to 6.97%. We hypothesize
that this level of improvement may result from state loss
caused by our PEC, acting as a variant of dropout [64], which
helps prevent overfitting in certain domains.

6.3.1 Two-level PEC Saving and Recovery. We evaluate
the effectiveness of our two-level PEC saving and recovery
scheme in minimizing PLT and maintaining model accuracy.
Given the faster speed of the snapshot process compared to
the persist process, we configure𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 = 1 and experiment
with varying 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 values, as depicted in Figure 15(a).
Compared with the baseline (𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 = 1, 𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 = 1)
setup, increasing 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 markedly reduces PLT, owing to
the retrieval of partial experts from the in-memory snapshots
on the non-fault node. Moreover, the two-level recovery with
the (𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 = 4, 𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 = 1) setup (“WO-2L” in Table3)
achieves the highest average accuracy on downstream tasks,
exceeding the baseline by 1.08%.

6.3.2 Sequential versus Load-aware Selection. We con-
duct experiments on the SwinV2-MoE model pre-training to
evaluate the impact of different partial expert selection meth-
ods on model accuracy. As shown in Figure 14(b), the three
methods—baseline, PEC with sequential selection, and PEC
with load-aware selection—exhibit minimal differences, with
less than a 0.0012% variance in test accuracy after 80 train-
ing epochs. Considering that load-aware selection incurs

(1,1) (2,1) (4,1) (8,1) (16,1)
(Ksnapshot, Kpersist)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

PL
T 

(%
)

Storage Recovery
Two-Level Recovery

(a) Two-Level Recovery

1 2 4 8 16 32
Fault Number

0

1

2

3

4

5

6

7

PL
T 

(%
)

Kpec = 1
Dynamic-K

kpec = 1

kpec = 2

kpec = 4

Dynamic-K Kpec value

(b) Dynamic-k

Figure 15. (a) shows the correlation between PLT and vari-
ous combinations of 𝐾𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡 and 𝐾𝑝𝑒𝑟𝑠𝑖𝑠𝑡 , using two-level
recovery. The error bar represents the fluctuation in mea-
sured values. (b) demonstrates the efficacy of our Dynamic-K
strategy in reducing PLT, with the red line tracking the dy-
namic adjustments of𝐾𝑝𝑒𝑐 . These experiments are conducted
during the pre-training of the GPT-350M-16Emodel in Case2.

additional control and synchronization costs while maintain-
ing comparable accuracy, sequential selection appears to be
the more practical choice for real-world applications. Addi-
tionally, these experiments confirm that our PEC method is
applicable to both language and vision models.

6.3.3 Dynamic-K. We evaluate the efficacy of our pro-
posed dynamic-K strategy in ensuring that the PLT does
not exceed the pre-set threshold of 3.75% as the number of
faults increases. As shown in Figure 15(b), the value of 𝐾𝑝𝑒𝑐

dynamically adjusts from 1 to 4, in response to escalating
fault occurrences. With this strategy, the cumulative PLT
remains at a low level, whereas a constant setting of𝐾𝑝𝑒𝑐 = 1
results in a linear increase.

6.3.4 Fault Tolerance during Fine-Tuning. In addition
to the model’s pre-training phase, fine-tuning is another cru-
cial stage that requires extended training periods and fault
tolerance. To evaluate the impact of our proposed PEC dur-
ing the fine-tuning phase, we conduct experiments using the
Alpaca dataset [65] to fine-tune the open-source, pre-trained
OLMoE model [43]. We set a fault interruption occurring



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

Table 4. Accuracy results from fine-tuning the OLMoE [43]
model using variousmethods. “Base” refers to the pre-trained
model without fine-tuning, “FT-w.o.E” indicates the fine-
tuned model without fine-tuning all expert parameters, “FT-
Full” represents the fine-tuned model with full state saving
at each checkpointing, and “FT-PEC” denotes the fine-tuned
model utilizing PEC that saves 1/8 of the experts at each
checkpoint. The tasks includes: HellaSwag [80], PIQA [4],
WG [57], BoolQ [10], ARC-C [11], OBQA [41], RTE [69].

Method HS PIQA WG BQ ARC OBQA RTE Avg.

Base 57.99 80.52 68.59 74.46 47.27 44.80 54.51 61.16
FT-w.o.E 58.58 81.88 68.51 76.82 48.72 45.20 63.54 63.32
FT-Full 58.34 81.34 70.40 79.11 48.38 45.00 66.06 64.09
FT-PEC 58.78 81.45 70.24 79.17 48.23 45.00 65.58 64.06

halfway through the process. As shown in Table 4, PECmain-
tains accuracy comparable to the full-saving method. Addi-
tionally, we conduct experiments on fine-tuning with freez-
ing all the expert parameters. This approach still achieves
an increase in average accuracy, from 61.16% to 63.32%, with
only a slight degradation of 0.77% compared to full-parameter
fine-tuning. These results further substantiate that the expert
parameters are less sensitive to a limited number of updates.

7 Conclusion & Future Work
The advent of MoE models poses efficiency challenges for
conventional fault-tolerant checkpointing methods due to
the substantial escalation inmodel parameters. Breaking new
ground in efficient fault tolerance forMoEmodel training, we
propose the Mixture-of-Checkpoint System (MoC-System).
This system integrates an innovative algorithm-system co-
design—Partial Experts Checkpoint (PEC)mechanism—along
withmultiple optimization strategies, including fully sharded
checkpointing and two-level checkpointing management.
Empirical evaluations substantiate that our MoC-System
significantly reduces checkpointing overhead without com-
promising model accuracy.
While existing LLM checkpointing ensures algorithm in-

variance, the MoC-System illustrates the feasibility of a more
flexible algorithm-system co-designed approach to fault tol-
erance. As system efficiency becomes increasingly important
in LLM development, more algorithms are being co-designed
to enhance efficiency during training and inference. We be-
lieve fault tolerance can also be more closely integrated with
LLM algorithms. In future work, we intend to explore fea-
tures of LLMs, such as sparsity, to develop more efficient
co-design strategies for LLM training and fault tolerance.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Yiran
Chen, for their valuable comments and suggestions. This
work was supported in part by the National Key R&D Pro-
gram of China (No. 2024YFB4505800), the National Natural

Science Foundation of China (No. 62402411), the Guang-
dong Basic and Applied Basic Research Foundation (No.
2023A1515110353), the Guangdong Provincial Talent Pro-
gram (No. 2023QN10X252), and the Guangzhou-HKUST(GZ)
Joint Funding Program (No. 2024A03J0624). This research
was conducted on the High-Performance Computing Plat-
form of HKUST(GZ).

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge

Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt,
Sam Altman, Shyamal Anadkat, et al. 2023. GPT-4 Technical Report.
arXiv preprint arXiv:2303.08774 (2023).

[2] Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin
Choi, and Hannaneh Hajishirzi. 2019. MathQA: Towards Interpretable
Math Word Problem Solving with Operation-Based Formalisms.

[3] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle
Ott, Sam Shleifer, Xi Victoria Lin, Jingfei Du, Srinivasan Iyer, Ra-
makanth Pasunuru, et al. 2021. Efficient Large Scale Language Model-
ing with Mixtures of Experts. arXiv preprint arXiv:2112.10684 (2021).

[4] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. 2020.
PIQA: Reasoning about Physical Commonsense in Natural Language.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
7432–7439.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language Models Are Few-Shot
Learners. Advances in Neural Information Processing Systems 33 (2020),
1877–1901.

[6] Weilin Cai, Juyong Jiang, Le Qin, Junwei Cui, Sunghun Kim, and Jiayi
Huang. 2024. Shortcut-connected Expert Parallelism for Accelerating
Mixture of Experts. arXiv preprint arXiv:2404.05019 (2024).

[7] Weilin Cai, Juyong Jiang, Fan Wang, Jing Tang, Sunghun Kim, and
Jiayi Huang. 2024. A Survey on Mixture of Experts. arXiv preprint
arXiv:2407.06204 (2024).

[8] Menglei Chen, Yu Hua, Rong Bai, and Jianming Huang. 2023. A Cost-
Efficient Failure-Tolerant Scheme for Distributed DNN Training. In
2023 IEEE 41st International Conference on Computer Design (ICCD).
IEEE, 150–157.

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, et al. 2023. PaLM: Scaling Lan-
guage Modeling with Pathways. Journal of Machine Learning Research
24, 240 (2023), 1–113.

[10] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski,
Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring The
Surprising Difficulty of Natural Yes/No Questions. arXiv preprint
arXiv:1905.10044 (2019).

[11] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabhar-
wal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think You Have
Solved Question Answering? Try Arc, The AI2 Reasoning Challenge.
arXiv preprint arXiv:1803.05457 (2018).

[12] Alibaba Cloud. 2024. AICB. https://github.com/aliyun/aicb
[13] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.

FlashAttention: Fast and Memory-Efficient Exact Attention with IO-
Awareness. Advances in Neural Information Processing Systems 35
(2022), 16344–16359.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. ImageNet: A Large-Scale Hierarchical Image Database. In 2009
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
248–255.

https://github.com/aliyun/aicb


MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

[15] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio
Baccanico, Joseph Fullop, and William Kramer. 2014. Lessons Learned
from The Analysis of System Failures at Petascale: The Case of Blue
Waters. In 2014 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks. IEEE, 610–621.

[16] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lep-
ikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu,
Orhan Firat, et al. 2022. GLaM: Efficient Scaling of Language Mod-
els with Mixture-of-Experts. In International Conference on Machine
Learning. PMLR, 5547–5569.

[17] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa
Mudigere, Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha
Smelyanskiy, and Murali Annavaram. 2022. Check-N-Run: A Check-
pointing System for Training Deep Learning Recommendation Models.
In 19th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 22). 929–943.

[18] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch Trans-
formers: Scaling to Trillion ParameterModels with Simple and Efficient
Sparsity. Journal of Machine Learning Research 23, 120 (2022), 1–39.

[19] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Ti-
wari. 2017. Failures in Large Scale Systems: Long-Term Measurement,
Analysis, and Implications. In Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis.
1–12.

[20] Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and
Jie Tang. 2021. FastMoE: A Fast Mixture-of-Expert Training System.
arXiv preprint arXiv:2103.13262 (2021).

[21] Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo,
Shangfeng Shi, and Qin Li. 2022. FasterMoE: Modeling and Optimizing
Training of Large-Scale Dynamic Pre-Trained Models. In Proceedings
of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 120–134.

[22] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. GPipe: Efficient Training of Giant Neural Networks
Using Pipeline Parallelism. Advances in Neural Information Processing
Systems 32 (2019).

[23] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu,
Zilong Wang, Rafael Salas, Jithin Jose, Prabhat Ram, et al. 2023. Tutel:
Adaptive Mixture-of-Experts at Scale. Proceedings of Machine Learning
and Systems 5 (2023).

[24] Ranggi Hwang, Jianyu Wei, Shijie Cao, Changho Hwang, Xiaohu
Tang, Ting Cao, and Mao Yang. 2024. Pre-Gated MoE: An Algorithm-
System Co-Design for Fast and Scalable Mixture-of-Expert Inference.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). IEEE, 1018–1031.

[25] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch,
Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, et al. 2024. Mixtral of
Experts. arXiv preprint arXiv:2401.04088 (2024).

[26] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen,
Zhi Zhang, Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, et al.
2024. MegaScale: Scaling Large Language Model Training to More
Than 10,000 GPUs. In 21st USENIX Symposium on Networked Systems
Design and Implementation (NSDI 24). 745–760.

[27] Richard Koo and Sam Toueg. 1987. Checkpointing and Rollback-
Recovery for Distributed Systems. IEEE Transactions on Software
Engineering 1 (1987), 23–31.

[28] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence
McAfee, Michael Andersch, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Reducing Activation Recomputation in Large Transformer
Models. Proceedings of Machine Learning and Systems 5 (2023).

[29] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy.
2017. RACE: Large-scale ReAding Comprehension Dataset From Ex-
aminations. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing. Association for Computational Lin-
guistics, Copenhagen, Denmark, 785–794.

[30] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François
Yvon, Matthias Gallé, et al. 2023. BLOOM: A 176B-Parameter Open-
Access Multilingual Language Model. (2023).

[31] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. 2020. GShard: Scaling Giant Models with Conditional
Computation and Automatic Sharding. arXiv preprint arXiv:2006.16668
(2020).

[32] Shenggui Li, Fuzhao Xue, Chaitanya Baranwal, Yongbin Li, and Yang
You. 2021. Sequence Parallelism: Long Sequence Training from System
Perspective. arXiv preprint arXiv:2105.13120 (2021).

[33] Xinyu Lian, Sam Ade Jacobs, Lev Kurilenko, Masahiro Tanaka, Stas
Bekman, Olatunji Ruwase, and Minjia Zhang. 2024. Universal Check-
pointing: Efficient and Flexible Checkpointing for Large Scale Dis-
tributed Training. arXiv preprint arXiv:2406.18820 (2024).

[34] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang
Zhao, Chengqi Dengr, Chong Ruan, Damai Dai, Daya Guo, et al. 2024.
DeepSeek-v2: A Strong, Economical, and Efficient Mixture-of-Experts
Language Model. arXiv preprint arXiv:2405.04434 (2024).

[35] Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, Matthew B Blaschko,
Shengen Yan, Guohao Dai, Huazhong Yang, and Yu Wang. 2024. Effi-
cient Expert Pruning for Sparse Mixture-of-Experts Language Models:
Enhancing Performance and Reducing Inference Costs. arXiv preprint
arXiv:2407.00945 (2024).

[36] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Baining Guo. 2021. Swin Transformer: Hierarchi-
cal Vision Transformer using Shifted Windows. In Proceedings of the
IEEE/CVF international conference on computer vision. 10012–10022.

[37] Kiwan Maeng, Shivam Bharuka, Isabel Gao, Mark Jeffrey, Vikram
Saraph, Bor-Yiing Su, Caroline Trippel, Jiyan Yang, Mike Rabbat, Bran-
don Lucia, et al. 2021. Understanding and Improving Failure Tolerant
Training for Deep Learning Recommendation with Partial Recovery.
Proceedings of Machine Learning and Systems 3 (2021), 637–651.

[38] Avinash Maurya, Robert Underwood, M Mustafa Rafique, Franck Cap-
pello, and Bogdan Nicolae. 2024. DataStates-LLM: Lazy Asynchronous
Checkpointing for Large Language Models. In Proceedings of the 33rd
International Symposium on High-Performance Parallel and Distributed
Computing. 227–239.

[39] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher.
2016. Pointer Sentinel Mixture Models. arXiv preprint arXiv:1609.07843
(2016).

[40] Microsoft. 2022. Megatron-DeepSpeed. https://github.com/microsoft/
Megatron-DeepSpeed

[41] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal.
2018. Can A Suit of Armor Conduct Electricity? A New Dataset for
Open Book Question Answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Brussels, Belgium, 2381–2391.

[42] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram. 2021.
CheckFreq: Frequent, Fine-Grained DNN Checkpointing. In 19th
USENIX Conference on File and Storage Technologies (FAST 21). 203–216.

[43] Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob
Morrison, Sewon Min, Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan
Lambert, et al. 2024. OLMoE: Open Mixture-of-Experts Language
Models. arXiv preprint arXiv:2409.02060 (2024).

[44] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN
Training. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 1–15.

https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed


ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Weilin Cai, Le Qin, and Jiayi Huang

[45] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Effi-
cient Large-Scale Language Model Training on GPU Clusters Using
Megatron-LM. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–15.

[46] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu
Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit
Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep Learning
Recommendation Model for Personalization and Recommendation
Systems.

[47] Bogdan Nicolae, Jiali Li, Justin M Wozniak, George Bosilca, Matthieu
Dorier, and Franck Cappello. 2020. DeepFreeze: Towards Scalable
Asynchronous Checkpointing of Deep Learning Models. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). 172–181.

[48] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, et al. 2022. Training Language Models to Follow
Instructions with Human Feedback. Advances in Neural Information
Processing Systems 35 (2022), 27730–27744.

[49] Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. 2023. Zero
Bubble Pipeline Parallelism. In The Twelfth International Conference
on Learning Representations.

[50] Aurick Qiao, BryonAragam, Bingjing Zhang, and Eric Xing. 2019. Fault
Tolerance in Iterative-Convergent Machine Learning. In International
Conference on Machine Learning. PMLR, 5220–5230.

[51] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang,
Reza Yazdani Aminabadi, Ammar Ahmad Awan, Jeff Rasley, and Yux-
iong He. 2022. DeepSpeed-MoE: Advancing Mixture-of-Experts Infer-
ence and Training to Power Next-Generation AI Scale. In International
Conference on Machine Learning. PMLR, 18332–18346.

[52] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
2020. Zero: Memory Optimizations Toward Training Trillion Param-
eter Models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 1–16.

[53] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and
Yuxiong He. 2021. Zero-Infinity: Breaking The GPU Memory Wall
for Extreme Scale Deep Learning. In Proceedings of The International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1–14.

[54] Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, and Tushar
Krishna. 2020. ASTRA-Sim: Enabling SW/HW Co-Design Exploration
for Distributed DL Training Platforms. In 2020 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). IEEE,
81–92.

[55] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji
Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.
2021. Zero-Offload: Democratizing Billion-Scale Model Training. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). 551–564.

[56] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann,
Rodolphe Jenatton, André Susano Pinto, Daniel Keysers, and Neil
Houlsby. 2021. Scaling Vision with Sparse Mixture of Experts. Ad-
vances in Neural Information Processing Systems 34 (2021), 8583–8595.

[57] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin
Choi. 2021. WinoGrande: An Adversarial Winograd Schema Challenge
at Scale. Commun. ACM 64, 9 (2021), 99–106.

[58] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc Le, Geoffrey Hinton, and Jeff Dean. 2016. Outrageously Large
Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. In
International Conference on Learning Representations.

[59] Liang Shen, Zhihua Wu, WeiBao Gong, Hongxiang Hao, Yangfan Bai,
HuaChao Wu, Xinxuan Wu, Jiang Bian, Haoyi Xiong, Dianhai Yu, et al.
2022. SE-MoE: A Scalable and Efficient Mixture-of-Experts Distributed
Training and Inference System. arXiv preprint arXiv:2205.10034 (2022).

[60] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2019. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv preprint arXiv:1909.08053 (2019).

[61] Siddharth Singh, Olatunji Ruwase, Ammar Ahmad Awan, Samyam
Rajbhandari, Yuxiong He, and Abhinav Bhatele. 2023. AHybrid Tensor-
Expert-Data Parallelism Approach to Optimize Mixture-of-Experts
Training. In Proceedings of the 37th International Conference on Super-
computing. 203–214.

[62] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley,
Samyam Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye,
George Zerveas, Vijay Korthikanti, et al. 2022. Using DeepSpeed
and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale
Generative Language Model. arXiv preprint arXiv:2201.11990 (2022).

[63] Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R
Steeves, Joel Hestness, and Nolan Dey. 2023. SlimPa-
jama: A 627B Token Cleaned and Deduplicated Version
of RedPajama. https://cerebras.ai/blog/slimpajama-a-627b-
token-cleaned-and-deduplicated-version-of-redpajama.
https://huggingface.co/datasets/cerebras/SlimPajama-627B

[64] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. 2014. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. The Journal of Machine Learning
Research 15, 1 (2014), 1929–1958.

[65] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen
Li, Carlos Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023.
Stanford Alpaca: An Instruction-following LLaMA Model. https://
github.com/tatsu-lab/stanford_alpaca.

[66] LLaMA-MoE Team. 2023. LLaMA-MoE: Building Mixture-of-Experts
from LLaMA with Continual Pre-training. https://github.com/pjlab-
sys4nlp/llama-moe

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neural Information Processing
Systems.

[68] Borui Wan, Mingji Han, Yiyao Sheng, Zhichao Lai, Mofan Zhang,
Junda Zhang, Yanghua Peng, Haibin Lin, Xin Liu, and Chuan Wu.
2024. ByteCheckpoint: A Unified Checkpointing System for LLM
Development. arXiv preprint arXiv:2407.20143 (2024).

[69] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh,
Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2019.
SuperGLUE: A Stickier Benchmark for General-Purpose Language
Understanding Systems. Advances in Neural Information Processing
Systems 32 (2019).

[70] GuanhuaWang, Olatunji Ruwase, Bing Xie, and YuxiongHe. 2024. Fast-
Persist: Accelerating Model Checkpointing in Deep Learning. arXiv
preprint arXiv:2406.13768 (2024).

[71] Hao Wang, Han Tian, Jingrong Chen, Xinchen Wan, Jiacheng Xia,
Gaoxiong Zeng, Wei Bai, Junchen Jiang, Yong Wang, and Kai Chen.
2024. Towards Domain-Specific Network Transport for Distributed
DNN Training. In 21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24). 1421–1443.

[72] Yuxin Wang, Shaohuai Shi, Xin He, Zhenheng Tang, Xinglin Pan, Yang
Zheng, Xiaoyu Wu, Amelie Chi Zhou, Bingsheng He, and Xiaowen
Chu. 2023. Reliable and Efficient In-Memory Fault Tolerance of Large
Language Model Pretraining. arXiv preprint arXiv:2310.12670 (2023).

[73] Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu, TS Eu-
gene Ng, and Yida Wang. 2023. Gemini: Fast Failure Recovery in
Distributed Training with In-Memory Checkpoints. In Proceedings of
the 29th Symposium on Operating Systems Principles. 364–381.

[74] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebas-
tian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald
Metzler, et al. 2022. Emergent Abilities of Large Language Models.
arXiv preprint arXiv:2206.07682 (2022).

https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/pjlab-sys4nlp/llama-moe
https://github.com/pjlab-sys4nlp/llama-moe


MoC-System: Efficient Fault Tolerance for Sparse Mixture-of-Experts Model Training ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

[75] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia,
Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. Advances in Neural
Information Processing Systems 35 (2022), 24824–24837.

[76] Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü,
Peng Cheng, Jianhao Zhang, Xiaoyu Zhang, Liang Zeng, et al. 2024.
Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-
Experts Language Models. arXiv preprint arXiv:2406.06563 (2024).

[77] Baodong Wu, Lei Xia, Qingping Li, Kangyu Li, Xu Chen, Yongqiang
Guo, Tieyao Xiang, Yuheng Chen, and Shigang Li. 2023. TRANSOM:
An Efficient Fault-Tolerant System for Training LLMs. arXiv preprint
arXiv:2310.10046 (2023).

[78] Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, and Yang
You. 2022. Go Wider Instead of Deeper. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36. 8779–8787.

[79] Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and
Mengwei Xu. 2023. EdgeMoE: Fast On-Device Inference of MoE-based

Large Language Models. arXiv preprint arXiv:2308.14352 (2023).
[80] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin

Choi. 2019. HellaSwag: Can a Machine Really Finish Your Sentence?.
In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics.

[81] Mingshu Zhai, Jiaao He, Zixuan Ma, Zan Zong, Runqing Zhang, and
Jidong Zhai. 2023. SmartMoE: Efficiently Training Sparsely-Activated
Models through Combining Offline and Online Parallelization. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). 961–975.

[82] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang,
Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer,
et al. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded Data
Parallel. arXiv preprint arXiv:2304.11277 (2023).

[83] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang,
Jeff Dean, Noam Shazeer, and William Fedus. 2022. ST-MoE: Design-
ing Stable and Transferable Sparse Expert Models. arXiv preprint
arXiv:2202.08906 (2022).


	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Sparse Mixture-of-Experts (MoE) Models
	2.2 Distributed Training of MoE Models
	2.3 Fault-tolerant Checkpointing for Distributed Training System

	3 Partial Experts Checkpointing
	3.1 Analysis
	3.2 Partial Experts Selection

	4 Fully Sharded Checkpointing
	4.1 Equal Sharding for Expert Part
	4.2 Equal Sharding for Non-Expert Part
	4.3 Adaptive Sharding for Non-Expert Part

	5 Two-Level Checkpointing Management
	5.1 Two-level PEC Saving and Recovery
	5.2 Asynchronous Checkpointing & Triple Buffering
	5.3 Adaptive Configuration for Two-Level PEC

	6 Evaluation
	6.1 Experimental Setup
	6.2 Improvements in Checkpointing Efficiency
	6.3 Impact on Model Accuracy

	7 Conclusion & Future Work
	Acknowledgments
	References

